Linker-gating ring complex as passive spring and Ca2+-dependent machine for a voltage- and Ca2+-activated potassium channel

Xiaowei Niu, Xiang Qian, Karl L. Magleby

Research output: Contribution to journalArticle

126 Scopus citations

Abstract

Ion channels are proteins that control the flux of ions across cell membranes by opening and closing (gating) their pores. It has been proposed that channels gated by internal agonists have an intracellular gating ring that extracts free energy from agonist binding to open the gates using linkers that directly connect the gating ring to the gates. Here we find for a voltage- and Ca2+-activated K+ (BK) channel that shortening the linkers increases channel activity and lengthening the linkers decreases channel activity, both in the presence and absence of intracellular Ca2+. These observations are consistent with a mechanical model in which the linker-gating ring complex forms a passive spring that applies force to the gates in the absence of Ca2+ to modulate the voltage-dependent gating. Adding Ca2+ then changes the force to further activate the channel. Both the passive and Ca2+-induced forces contribute to the gating of the channel.

Original languageEnglish (US)
Pages (from-to)745-756
Number of pages12
JournalNeuron
Volume42
Issue number5
DOIs
StatePublished - Jun 10 2004

ASJC Scopus subject areas

  • Neuroscience(all)

Fingerprint Dive into the research topics of 'Linker-gating ring complex as passive spring and Ca<sup>2+</sup>-dependent machine for a voltage- and Ca<sup>2+</sup>-activated potassium channel'. Together they form a unique fingerprint.

  • Cite this