Limited proteolysis of high density lipoprotein abolishes its interaction with cell-surface binding sites that promote cholesterol efflux

Armando J Mendez, John F. Oram

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

High-density lipoprotein (HDL) components remove cholesterol from cells by two independent mechanisms. Whereas HDL phospholipids pick up cholesterol that desorbs from the plasma membranes, HDL apolipoproteins appear to interact with cell-surface binding sites that target for removal pools of cellular cholesterol that feed into the cholesteryl ester cycle. Here we show that mild trypsin treatment of HDL almost completely abolishes this apolipoprotein-mediated cholesterol removal process. When HDL was treated with trypsin for various periods of time and then incubated with cholesterol-loaded fibroblasts, treatment for only 5 min reduced the ability of HDL to remove excess cholesterol from cellular pools that were accessible to esterification by the enzyme acyl CoA:cholesterol acyltransferase. This mild treatment digested less than 20% of HDL apolipoproteins and did not alter the lipid composition, size distribution, or electrophoretic mobility of the particles. Trypsin treatment of HDL for up to 1 h caused no further reduction in its ability to remove cellular cholesterol despite a greater than 2-fold increase in apolipoprotein digestion. Trypsin treatment of HDL also reduced its ability to deplete the cholesteryl ester content of sterol-laden macrophages. Promotion of cholesterol efflux from the plasma membrane by HDL phospholipids was unaffected by even extensive proteolysis. In parallel to the loss of cholesterol transport-stimulating activity, trypsin treatment of HDL for only 5 min nearly abolished its interaction with high-affinity binding sites on cholesterol-loaded fibroblasts. Reconstitution of trypsin-modified HDL with isolated apo A-I or apo A-II restored the cholesterol transport-stimulating activity of the particles. Thus a minor trypsin-labile fraction of HDL apolipoproteins is almost exclusively responsible for the apolipoprotein-dependent component of cholesterol efflux mediated by HDL particles.

Original languageEnglish
Pages (from-to)285-299
Number of pages15
JournalBiochimica et Biophysica Acta - Lipids and Lipid Metabolism
Volume1346
Issue number3
DOIs
StatePublished - Jun 22 1997
Externally publishedYes

Fingerprint

Proteolysis
HDL Lipoproteins
Cell Communication
Binding Sites
Cholesterol
Apolipoproteins
Trypsin
Cholesterol Esters
Fibroblasts
Cell membranes
Phospholipids
Cell Membrane
Sterol O-Acyltransferase
Apolipoprotein A-II
Electrophoretic mobility
Macrophages
Esterification
Apolipoprotein A-I
Sterols

Keywords

  • Apolipoprotein
  • Cell-surface binding site
  • Cholesterol efflux
  • HDL

ASJC Scopus subject areas

  • Biochemistry
  • Endocrinology
  • Biophysics

Cite this

@article{73e86c2c111049b0a496d29d9ba64d53,
title = "Limited proteolysis of high density lipoprotein abolishes its interaction with cell-surface binding sites that promote cholesterol efflux",
abstract = "High-density lipoprotein (HDL) components remove cholesterol from cells by two independent mechanisms. Whereas HDL phospholipids pick up cholesterol that desorbs from the plasma membranes, HDL apolipoproteins appear to interact with cell-surface binding sites that target for removal pools of cellular cholesterol that feed into the cholesteryl ester cycle. Here we show that mild trypsin treatment of HDL almost completely abolishes this apolipoprotein-mediated cholesterol removal process. When HDL was treated with trypsin for various periods of time and then incubated with cholesterol-loaded fibroblasts, treatment for only 5 min reduced the ability of HDL to remove excess cholesterol from cellular pools that were accessible to esterification by the enzyme acyl CoA:cholesterol acyltransferase. This mild treatment digested less than 20{\%} of HDL apolipoproteins and did not alter the lipid composition, size distribution, or electrophoretic mobility of the particles. Trypsin treatment of HDL for up to 1 h caused no further reduction in its ability to remove cellular cholesterol despite a greater than 2-fold increase in apolipoprotein digestion. Trypsin treatment of HDL also reduced its ability to deplete the cholesteryl ester content of sterol-laden macrophages. Promotion of cholesterol efflux from the plasma membrane by HDL phospholipids was unaffected by even extensive proteolysis. In parallel to the loss of cholesterol transport-stimulating activity, trypsin treatment of HDL for only 5 min nearly abolished its interaction with high-affinity binding sites on cholesterol-loaded fibroblasts. Reconstitution of trypsin-modified HDL with isolated apo A-I or apo A-II restored the cholesterol transport-stimulating activity of the particles. Thus a minor trypsin-labile fraction of HDL apolipoproteins is almost exclusively responsible for the apolipoprotein-dependent component of cholesterol efflux mediated by HDL particles.",
keywords = "Apolipoprotein, Cell-surface binding site, Cholesterol efflux, HDL",
author = "Mendez, {Armando J} and Oram, {John F.}",
year = "1997",
month = "6",
day = "22",
doi = "10.1016/S0005-2760(97)00031-3",
language = "English",
volume = "1346",
pages = "285--299",
journal = "Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids",
issn = "1388-1981",
publisher = "Elsevier",
number = "3",

}

TY - JOUR

T1 - Limited proteolysis of high density lipoprotein abolishes its interaction with cell-surface binding sites that promote cholesterol efflux

AU - Mendez, Armando J

AU - Oram, John F.

PY - 1997/6/22

Y1 - 1997/6/22

N2 - High-density lipoprotein (HDL) components remove cholesterol from cells by two independent mechanisms. Whereas HDL phospholipids pick up cholesterol that desorbs from the plasma membranes, HDL apolipoproteins appear to interact with cell-surface binding sites that target for removal pools of cellular cholesterol that feed into the cholesteryl ester cycle. Here we show that mild trypsin treatment of HDL almost completely abolishes this apolipoprotein-mediated cholesterol removal process. When HDL was treated with trypsin for various periods of time and then incubated with cholesterol-loaded fibroblasts, treatment for only 5 min reduced the ability of HDL to remove excess cholesterol from cellular pools that were accessible to esterification by the enzyme acyl CoA:cholesterol acyltransferase. This mild treatment digested less than 20% of HDL apolipoproteins and did not alter the lipid composition, size distribution, or electrophoretic mobility of the particles. Trypsin treatment of HDL for up to 1 h caused no further reduction in its ability to remove cellular cholesterol despite a greater than 2-fold increase in apolipoprotein digestion. Trypsin treatment of HDL also reduced its ability to deplete the cholesteryl ester content of sterol-laden macrophages. Promotion of cholesterol efflux from the plasma membrane by HDL phospholipids was unaffected by even extensive proteolysis. In parallel to the loss of cholesterol transport-stimulating activity, trypsin treatment of HDL for only 5 min nearly abolished its interaction with high-affinity binding sites on cholesterol-loaded fibroblasts. Reconstitution of trypsin-modified HDL with isolated apo A-I or apo A-II restored the cholesterol transport-stimulating activity of the particles. Thus a minor trypsin-labile fraction of HDL apolipoproteins is almost exclusively responsible for the apolipoprotein-dependent component of cholesterol efflux mediated by HDL particles.

AB - High-density lipoprotein (HDL) components remove cholesterol from cells by two independent mechanisms. Whereas HDL phospholipids pick up cholesterol that desorbs from the plasma membranes, HDL apolipoproteins appear to interact with cell-surface binding sites that target for removal pools of cellular cholesterol that feed into the cholesteryl ester cycle. Here we show that mild trypsin treatment of HDL almost completely abolishes this apolipoprotein-mediated cholesterol removal process. When HDL was treated with trypsin for various periods of time and then incubated with cholesterol-loaded fibroblasts, treatment for only 5 min reduced the ability of HDL to remove excess cholesterol from cellular pools that were accessible to esterification by the enzyme acyl CoA:cholesterol acyltransferase. This mild treatment digested less than 20% of HDL apolipoproteins and did not alter the lipid composition, size distribution, or electrophoretic mobility of the particles. Trypsin treatment of HDL for up to 1 h caused no further reduction in its ability to remove cellular cholesterol despite a greater than 2-fold increase in apolipoprotein digestion. Trypsin treatment of HDL also reduced its ability to deplete the cholesteryl ester content of sterol-laden macrophages. Promotion of cholesterol efflux from the plasma membrane by HDL phospholipids was unaffected by even extensive proteolysis. In parallel to the loss of cholesterol transport-stimulating activity, trypsin treatment of HDL for only 5 min nearly abolished its interaction with high-affinity binding sites on cholesterol-loaded fibroblasts. Reconstitution of trypsin-modified HDL with isolated apo A-I or apo A-II restored the cholesterol transport-stimulating activity of the particles. Thus a minor trypsin-labile fraction of HDL apolipoproteins is almost exclusively responsible for the apolipoprotein-dependent component of cholesterol efflux mediated by HDL particles.

KW - Apolipoprotein

KW - Cell-surface binding site

KW - Cholesterol efflux

KW - HDL

UR - http://www.scopus.com/inward/record.url?scp=0031583370&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031583370&partnerID=8YFLogxK

U2 - 10.1016/S0005-2760(97)00031-3

DO - 10.1016/S0005-2760(97)00031-3

M3 - Article

C2 - 9219913

AN - SCOPUS:0031583370

VL - 1346

SP - 285

EP - 299

JO - Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids

JF - Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids

SN - 1388-1981

IS - 3

ER -