Large eddy simulations of continental shallow cumulus convection

Ping Zhu, Bruce A Albrecht

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

This paper addresses the basic physics underlying continental fair-weather cumuli (FWC) and issues associated with the evolution of these clouds in response to the changes in external forcings and ambient meteorological conditions. To achieve the main objectives of this study, one FWC case observed from the Atmospheric Radiation Measurement (ARM) project at the southern Great Plains (SGP) site is simulated by a series of large-eddy simulation (LES) experiments. For FWC forced by a strong buoyant convection due to large surface buoyancy fluxes, the mixed layer (ML) is usually associated with a moisture flux divergence in the vertical caused by the moisture discontinuity across the top of the convective boundary layer (CBL). Such a divergence is intimately related to cumulus initiation and development since it transports a large amount of moisture to an area above the mean ML where the forced FWC form and develop. The initiation of continental forced FWC results from thermal penetrations into the stable layer above. An important application of the penetration theory is to predict cumulus initiation. On the basis of the LES data, the authors developed a simple scheme that can be used to diagnose cumulus initiation using the variables that may be provided by large-scale models, such as the Deardorff convective velocity scale, the mean ML height, the surface layer relative humidity, and the strength of the inversion. Unlike active marine shallow cumuli, the FWC focused on in this study are forced cumuli mainly supported by the buoyancy production in the ML. However, the simulations indicate that these clouds can have a significant impact on the turbulence intensity and transport in the CBL. Through sensitivity tests, the authors also studied the influence of the surface sensible and latent heat fluxes, the stratification above the CBL, the moisture difference across the top of the CBL, and the horizontal winds on the development of FWC and cloud radiative properties.

Original languageEnglish (US)
JournalJournal of Geophysical Research C: Oceans
Volume108
Issue number15
StatePublished - Aug 16 2003

Fingerprint

large eddy simulation
Large eddy simulation
cumulus
weather
Boundary layers
convection
Moisture
moisture
Buoyancy
boundary layers
convective boundary layer
Atmospheric radiation
Fluxes
mixed layer
Latent heat
buoyancy
divergence
penetration
Heat flux
Atmospheric humidity

Keywords

  • Cloud formation
  • Convective boundary layer
  • Fair-weather cumuli
  • Large-eddy simulation
  • Shallow moist convection

ASJC Scopus subject areas

  • Earth and Planetary Sciences (miscellaneous)
  • Atmospheric Science
  • Geochemistry and Petrology
  • Geophysics
  • Oceanography
  • Space and Planetary Science
  • Astronomy and Astrophysics

Cite this

Large eddy simulations of continental shallow cumulus convection. / Zhu, Ping; Albrecht, Bruce A.

In: Journal of Geophysical Research C: Oceans, Vol. 108, No. 15, 16.08.2003.

Research output: Contribution to journalArticle

@article{d15c679eae8342f6b1b1e91f503f4359,
title = "Large eddy simulations of continental shallow cumulus convection",
abstract = "This paper addresses the basic physics underlying continental fair-weather cumuli (FWC) and issues associated with the evolution of these clouds in response to the changes in external forcings and ambient meteorological conditions. To achieve the main objectives of this study, one FWC case observed from the Atmospheric Radiation Measurement (ARM) project at the southern Great Plains (SGP) site is simulated by a series of large-eddy simulation (LES) experiments. For FWC forced by a strong buoyant convection due to large surface buoyancy fluxes, the mixed layer (ML) is usually associated with a moisture flux divergence in the vertical caused by the moisture discontinuity across the top of the convective boundary layer (CBL). Such a divergence is intimately related to cumulus initiation and development since it transports a large amount of moisture to an area above the mean ML where the forced FWC form and develop. The initiation of continental forced FWC results from thermal penetrations into the stable layer above. An important application of the penetration theory is to predict cumulus initiation. On the basis of the LES data, the authors developed a simple scheme that can be used to diagnose cumulus initiation using the variables that may be provided by large-scale models, such as the Deardorff convective velocity scale, the mean ML height, the surface layer relative humidity, and the strength of the inversion. Unlike active marine shallow cumuli, the FWC focused on in this study are forced cumuli mainly supported by the buoyancy production in the ML. However, the simulations indicate that these clouds can have a significant impact on the turbulence intensity and transport in the CBL. Through sensitivity tests, the authors also studied the influence of the surface sensible and latent heat fluxes, the stratification above the CBL, the moisture difference across the top of the CBL, and the horizontal winds on the development of FWC and cloud radiative properties.",
keywords = "Cloud formation, Convective boundary layer, Fair-weather cumuli, Large-eddy simulation, Shallow moist convection",
author = "Ping Zhu and Albrecht, {Bruce A}",
year = "2003",
month = "8",
day = "16",
language = "English (US)",
volume = "108",
journal = "Journal of Geophysical Research: Oceans",
issn = "2169-9275",
publisher = "Wiley-Blackwell",
number = "15",

}

TY - JOUR

T1 - Large eddy simulations of continental shallow cumulus convection

AU - Zhu, Ping

AU - Albrecht, Bruce A

PY - 2003/8/16

Y1 - 2003/8/16

N2 - This paper addresses the basic physics underlying continental fair-weather cumuli (FWC) and issues associated with the evolution of these clouds in response to the changes in external forcings and ambient meteorological conditions. To achieve the main objectives of this study, one FWC case observed from the Atmospheric Radiation Measurement (ARM) project at the southern Great Plains (SGP) site is simulated by a series of large-eddy simulation (LES) experiments. For FWC forced by a strong buoyant convection due to large surface buoyancy fluxes, the mixed layer (ML) is usually associated with a moisture flux divergence in the vertical caused by the moisture discontinuity across the top of the convective boundary layer (CBL). Such a divergence is intimately related to cumulus initiation and development since it transports a large amount of moisture to an area above the mean ML where the forced FWC form and develop. The initiation of continental forced FWC results from thermal penetrations into the stable layer above. An important application of the penetration theory is to predict cumulus initiation. On the basis of the LES data, the authors developed a simple scheme that can be used to diagnose cumulus initiation using the variables that may be provided by large-scale models, such as the Deardorff convective velocity scale, the mean ML height, the surface layer relative humidity, and the strength of the inversion. Unlike active marine shallow cumuli, the FWC focused on in this study are forced cumuli mainly supported by the buoyancy production in the ML. However, the simulations indicate that these clouds can have a significant impact on the turbulence intensity and transport in the CBL. Through sensitivity tests, the authors also studied the influence of the surface sensible and latent heat fluxes, the stratification above the CBL, the moisture difference across the top of the CBL, and the horizontal winds on the development of FWC and cloud radiative properties.

AB - This paper addresses the basic physics underlying continental fair-weather cumuli (FWC) and issues associated with the evolution of these clouds in response to the changes in external forcings and ambient meteorological conditions. To achieve the main objectives of this study, one FWC case observed from the Atmospheric Radiation Measurement (ARM) project at the southern Great Plains (SGP) site is simulated by a series of large-eddy simulation (LES) experiments. For FWC forced by a strong buoyant convection due to large surface buoyancy fluxes, the mixed layer (ML) is usually associated with a moisture flux divergence in the vertical caused by the moisture discontinuity across the top of the convective boundary layer (CBL). Such a divergence is intimately related to cumulus initiation and development since it transports a large amount of moisture to an area above the mean ML where the forced FWC form and develop. The initiation of continental forced FWC results from thermal penetrations into the stable layer above. An important application of the penetration theory is to predict cumulus initiation. On the basis of the LES data, the authors developed a simple scheme that can be used to diagnose cumulus initiation using the variables that may be provided by large-scale models, such as the Deardorff convective velocity scale, the mean ML height, the surface layer relative humidity, and the strength of the inversion. Unlike active marine shallow cumuli, the FWC focused on in this study are forced cumuli mainly supported by the buoyancy production in the ML. However, the simulations indicate that these clouds can have a significant impact on the turbulence intensity and transport in the CBL. Through sensitivity tests, the authors also studied the influence of the surface sensible and latent heat fluxes, the stratification above the CBL, the moisture difference across the top of the CBL, and the horizontal winds on the development of FWC and cloud radiative properties.

KW - Cloud formation

KW - Convective boundary layer

KW - Fair-weather cumuli

KW - Large-eddy simulation

KW - Shallow moist convection

UR - http://www.scopus.com/inward/record.url?scp=1342312432&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=1342312432&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:1342312432

VL - 108

JO - Journal of Geophysical Research: Oceans

JF - Journal of Geophysical Research: Oceans

SN - 2169-9275

IS - 15

ER -