Ionic requirements for membrane-glass adhesion and giga seal formation in patch-clamp recording

Avi Priel, Ziv Gil, Vincent T. Moy, Karl L. Magleby, Shai D. Silberberg

Research output: Contribution to journalArticle

30 Scopus citations

Abstract

Patch-clamp recording has revolutionized the study of ion channels, transporters, and the electrical activity of small cells. Vital to this method is formation of a tight seal between glass recording pipette and cell membrane. To better understand seal formation and improve practical application of this technique, we examine the effects of divalent ions, protons, ionic strength, and membrane proteins on adhesion of membrane to glass and on seal resistance using both patch-clamp recording and atomic force microscopy. We find that H +, Ca2+, and Mg2+ increase adhesion force between glass and membrane (lipid and cellular), decrease the time required to form a tight seal, and increase seal resistance. In the absence of H+ (10-10 M) and divalent cations (<10-8 M), adhesion forces are greatly reduced and tight seals are not formed. H+ (10-7 M) promotes seal formation in the absence of divalent cations. A positive correlation between adhesion force and seal formation indicates that high resistance seals are associated with increased adhesion between membrane and glass. A similar ionic dependence of the adhesion of lipid membranes and cell membranes to glass indicates that lipid membranes without proteins are sufficient for the action of ions on adhesion.

Original languageEnglish (US)
Pages (from-to)3893-3900
Number of pages8
JournalBiophysical journal
Volume92
Issue number11
DOIs
StatePublished - Jun 2007

ASJC Scopus subject areas

  • Biophysics

Fingerprint Dive into the research topics of 'Ionic requirements for membrane-glass adhesion and giga seal formation in patch-clamp recording'. Together they form a unique fingerprint.

  • Cite this