Investigations of high-speed civil transport inlet unstart at angle of attack

Ge Cheng Zha, Doyle Knight, Donald Smith

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


The unstart transient of a high-speed civil transport mixed compression axisymmetric inlet at Mach 2 and 2-deg angle of attack was investigated numerically by using a three-dimensional time-accurate Navier-Stokes solver. The Bald win-Lomax algebraic turbulence model and an extrapolation uniform mass bleed boundary condition for the slot bleed were employed. It is observed that, when an angle of attack is imposed, the flow on the leeward side has a stronger compression than that at zero angle of attack. The strong compression reduces the Mach number upstream of the terminal shock and therefore makes the shock move upstream first on the leeward side. The initial shock motion starts with the bifurcation of the terminal shock. The lower part of the split shock is stable because of the centerbody bleed, whereas the top part of the shock continues to travel upstream. When the terminal shock on the leeward side passes the bleed region, a separation is induced by the shock/boundary-layer interaction on the shoulder of the inlet centerbody, and the entire inlet is brought to unstart. The overall computed flowfield phenomena agree qualitatively with the experimental observations.

Original languageEnglish (US)
Pages (from-to)851-856
Number of pages6
JournalJournal of Aircraft
Issue number6
StatePublished - 1998
Externally publishedYes

ASJC Scopus subject areas

  • Aerospace Engineering


Dive into the research topics of 'Investigations of high-speed civil transport inlet unstart at angle of attack'. Together they form a unique fingerprint.

Cite this