Intraperitoneal injection of the pancreatic peptide amylin potently reduces behavioral impairment and brain amyloid pathology in murine models of Alzheimer's disease

H. Zhu, X. Wang, M. Wallack, H. Li, I. Carreras, A. Dedeoglu, J. Y. Hur, H. Zheng, H. Li, R. Fine, M. Mwamburi, X. Sun, N. Kowall, R. A. Stern, W. Q. Qiu

Research output: Contribution to journalArticlepeer-review

48 Scopus citations

Abstract

Amylin, a pancreatic peptide, and amyloid-beta peptides (Aβ), a major component of Alzheimer's disease (AD) brain, share similar β-sheet secondary structures, but it is not known whether pancreatic amylin affects amyloid pathogenesis in the AD brain. Using AD mouse models, we investigated the effects of amylin and its clinical analog, pramlintide, on AD pathogenesis. Surprisingly, chronic intraperitoneal (i.p.) injection of AD animals with either amylin or pramlintide reduces the amyloid burden as well as lowers the concentrations of Aβ in the brain. These treatments significantly improve their learning and memory assessed by two behavioral tests, Y maze and Morris water maze. Both amylin and pramlintide treatments increase the concentrations of Aβ1-42 in cerebral spinal fluid (CSF). A single i.p. injection of either peptide also induces a surge of Aβ in the serum, the magnitude of which is proportionate to the amount of Aβ in brain tissue. One intracerebroventricular injection of amylin induces a more significant surge in serum Aβ than one i.p. injection of the peptide. In 330 human plasma samples, a positive association between amylin and Aβ1-42 as well as Aβ1-40 is found only in patients with AD or amnestic mild cognitive impairment. As amylin readily crosses the blood-brain barrier, our study demonstrates that peripheral amylin's action on the central nervous system results in translocation of Aβ from the brain into the CSF and blood that could be an explanation for a positive relationship between amylin and Aβ in blood. As naturally occurring amylin may play a role in regulating Aβ in brain, amylin class peptides may provide a new avenue for both treatment and diagnosis of AD.

Original languageEnglish (US)
Pages (from-to)232-239
Number of pages8
JournalMolecular psychiatry
Volume20
Issue number2
DOIs
StatePublished - Feb 1 2015

ASJC Scopus subject areas

  • Molecular Biology
  • Psychiatry and Mental health
  • Cellular and Molecular Neuroscience

Fingerprint Dive into the research topics of 'Intraperitoneal injection of the pancreatic peptide amylin potently reduces behavioral impairment and brain amyloid pathology in murine models of Alzheimer's disease'. Together they form a unique fingerprint.

Cite this