Intracisternal basic fibroblast growth factor enhances functional recovery and up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction

Takakazu Kawamata, W. Dalton Dietrich, Timothy Schallert, Jeffrey E. Gotts, Robert R. Cocke, Larry I. Benowitz, Seth P. Finklestein

Research output: Contribution to journalArticle

271 Scopus citations

Abstract

Focal cerebral infarction (stroke) due to unilateral occlusion of the middle cerebral artery in mature rats produces deficits in sensorimotor function of the contralateral limbs that recover' partially over time. We found that biweekly intracisternal injection of basic fibroblast growth factor (bFGF; 0.5 μg/injection), a potent neurotrophic polypeptide, markedly enhanced recovery of sensorimotor function of the contralateral limbs during the first month after stroke without apparent adverse side effects. Immunostaining for growth-associated protein 43 (GAP-43), a molecular marker of axonal sprouting, showed a selective increase in GAP-43 immunoreactivity in the intact sensorimotor cortex contralateral to cerebral infarcts following bFGF treatment. These results show that bFGF treatment can enhance functional recovery after stroke, and that the mechanism may include stimulation of neuronal sprouting in the intact brain.

Original languageEnglish (US)
Pages (from-to)8179-8184
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume94
Issue number15
DOIs
StatePublished - Jul 22 1997

Keywords

  • Cerebral ischemia
  • Growth factors
  • Growth-associated protein 43

ASJC Scopus subject areas

  • Genetics
  • General

Fingerprint Dive into the research topics of 'Intracisternal basic fibroblast growth factor enhances functional recovery and up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction'. Together they form a unique fingerprint.

  • Cite this