Interactions between hypoxia tolerance and food deprivation in Amazonian oscars, Astronotus ocellatus

Gudrun De Boeck, Chris M. Wood, Fathima I. Iftikar, Victoria Matey, Graham R. Scott, Katherine A. Sloman, Maria De Nazar Paula Da Silva, Vera M.F. Almeida-Val, Adalberto L. Val

Research output: Contribution to journalArticlepeer-review

37 Scopus citations


Oscars are often subjected to a combination of low levels of oxygen and fasting during nest-guarding on Amazonian floodplains. We questioned whether this anorexia would aggravate the osmo-respiratory compromise. We compared fed and fasted oscars (1014 days) in both normoxia and hypoxia (1020 Torr, 4 h). Routine oxygen consumption rates (MO2) were increased by 75% in fasted fish, reflecting behavioural differences, whereas fasting improved hypoxia resistance and critical oxygen tensions (Pcrit) lowered from 54 Torr in fed fish to 34 Torr when fasting. In fed fish, hypoxia reduced liver lipid stores by approximately 50% and total liver energy content by 30%. Fasted fish had a 50% lower hepatosomatic index, resulting in lower total liver protein, glycogen and lipid energy stores under normoxia. Compared with hypoxic fed fish, hypoxic fasted fish only showed reduced liver protein levels and even gained glycogen (+50%) on a per gram basis. This confirms the hypothesis that hypoxia-tolerant fish protect their glycogen stores as much as possible as a safeguard for more prolonged hypoxic events. In general, fasted fish showed lower hydroxyacylCoA dehydrogenase activities compared with fed fish, although this effect was only significant in hypoxic fasted fish. Energy stores and activities of enzymes related to energy metabolism in muscle or gills were not affected. Branchial Na+ uptake rates were more than two times lower in fed fish, whereas Na+ efflux was similar. Fed and fasted fish quickly reduced Na+ uptake and efflux during hypoxia, with fasting fish responding more rapidly. Ammonia excretion and K+ efflux were reduced under hypoxia, indicating decreased transcellular permeability. Fasted fish had more mitochondria-rich cells (MRC), with larger crypts, indicating the increased importance of the branchial uptake route when feeding is limited. Gill MRC density and surface area were greatly reduced under hypoxia, possibly to reduce ion uptake and efflux rates. Density of mucous cells of normoxic fasted fish was approximately fourfold of that in fed fish. Overall, a 1014 day fasting period had no negative effects on hypoxia tolerance in oscars, as fasted fish were able to respond more quickly to lower oxygen levels, and reduced branchial permeability effectively.

Original languageEnglish (US)
Pages (from-to)4590-4600
Number of pages11
JournalJournal of Experimental Biology
Issue number24
StatePublished - Dec 2013
Externally publishedYes


  • Critical oxygen tension
  • Energy metabolism
  • Ion flux
  • Ionoregulation
  • Respiration

ASJC Scopus subject areas

  • Animal Science and Zoology
  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Physiology
  • Insect Science
  • Aquatic Science


Dive into the research topics of 'Interactions between hypoxia tolerance and food deprivation in Amazonian oscars, Astronotus ocellatus'. Together they form a unique fingerprint.

Cite this