Interaction between the second messengers cAMP and Ca2+ in mouse presynaptic taste cells

Craig D. Roberts, Gennady Dvoryanchikov, Stephen D Roper, Nirupa Chaudhari

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

The second messenger, 3′,5′-cyclic adenosine monophosphate (cAMP), is known to be modulated in taste buds following exposure to gustatory and other stimuli. Which taste cell type(s) (Type I/glial-like cells, Type II/receptor cells, or Type III/presynaptic cells) undergo taste-evoked changes of cAMP and what the functional consequences of such changes are remain unknown. Using Fura-2 imaging of isolated mouse vallate taste cells, we explored how elevating cAMP alters Ca2+ levels in identified taste cells. Stimulating taste buds with forskolin (Fsk; 1 μm) + isobutylmethylxanthine (IBMX; 100 μm), which elevates cellular cAMP, triggered Ca2+ transients in 38% of presynaptic cells (n = 128). We used transgenic GAD-GFP mice to show that cAMP-triggered Ca2+ responses occur only in the subset of presynaptic cells that lack glutamic acid decarboxylase 67 (GAD). We never observed cAMP-stimulated responses in receptor cells, glial-like cells or GAD-expressing presynaptic cells. The response to cAMP was blocked by the protein kinase A inhibitor H89 and by removing extracellular Ca2+. Thus, the response to elevated cAMP is a PKA-dependent influx of Ca2+. This Ca2+ influx was blocked by nifedipine (an inhibitor of L-type voltage-gated Ca2+ channels) but was unperturbed by ω-agatoxin IVA and ω-conotoxin GVIA (P/Q-type and N-type channel inhibitors, respectively). Single-cell RT-PCR on functionally identified presynaptic cells from GAD-GFP mice confirmed the pharmacological analyses: Cav1.2 (an L-type subunit) is expressed in cells that display cAMP-triggered Ca2+ influx, while Cav2.1 (a P/Q subunit) is expressed in all presynaptic cells, and underlies depolarization-triggered Ca2+ influx. Collectively, these data demonstrate cross-talk between cAMP and Ca2+ signalling in a subclass of taste cells that form synapses with gustatory fibres and may integrate tastant-evoked signals.

Original languageEnglish
Pages (from-to)1657-1668
Number of pages12
JournalJournal of Physiology
Volume587
Issue number8
DOIs
StatePublished - Apr 15 2009

Fingerprint

Second Messenger Systems
Cyclic AMP
Glutamate Decarboxylase
Taste Buds
Neuroglia
Agatoxins
Conotoxins
1-Methyl-3-isobutylxanthine
Fura-2
Colforsin
Nifedipine
Protein Kinase Inhibitors
Cyclic AMP-Dependent Protein Kinases
Synapses

ASJC Scopus subject areas

  • Physiology

Cite this

Interaction between the second messengers cAMP and Ca2+ in mouse presynaptic taste cells. / Roberts, Craig D.; Dvoryanchikov, Gennady; Roper, Stephen D; Chaudhari, Nirupa.

In: Journal of Physiology, Vol. 587, No. 8, 15.04.2009, p. 1657-1668.

Research output: Contribution to journalArticle

@article{b5956cafe7e14e87ace19d16fb434ec7,
title = "Interaction between the second messengers cAMP and Ca2+ in mouse presynaptic taste cells",
abstract = "The second messenger, 3′,5′-cyclic adenosine monophosphate (cAMP), is known to be modulated in taste buds following exposure to gustatory and other stimuli. Which taste cell type(s) (Type I/glial-like cells, Type II/receptor cells, or Type III/presynaptic cells) undergo taste-evoked changes of cAMP and what the functional consequences of such changes are remain unknown. Using Fura-2 imaging of isolated mouse vallate taste cells, we explored how elevating cAMP alters Ca2+ levels in identified taste cells. Stimulating taste buds with forskolin (Fsk; 1 μm) + isobutylmethylxanthine (IBMX; 100 μm), which elevates cellular cAMP, triggered Ca2+ transients in 38{\%} of presynaptic cells (n = 128). We used transgenic GAD-GFP mice to show that cAMP-triggered Ca2+ responses occur only in the subset of presynaptic cells that lack glutamic acid decarboxylase 67 (GAD). We never observed cAMP-stimulated responses in receptor cells, glial-like cells or GAD-expressing presynaptic cells. The response to cAMP was blocked by the protein kinase A inhibitor H89 and by removing extracellular Ca2+. Thus, the response to elevated cAMP is a PKA-dependent influx of Ca2+. This Ca2+ influx was blocked by nifedipine (an inhibitor of L-type voltage-gated Ca2+ channels) but was unperturbed by ω-agatoxin IVA and ω-conotoxin GVIA (P/Q-type and N-type channel inhibitors, respectively). Single-cell RT-PCR on functionally identified presynaptic cells from GAD-GFP mice confirmed the pharmacological analyses: Cav1.2 (an L-type subunit) is expressed in cells that display cAMP-triggered Ca2+ influx, while Cav2.1 (a P/Q subunit) is expressed in all presynaptic cells, and underlies depolarization-triggered Ca2+ influx. Collectively, these data demonstrate cross-talk between cAMP and Ca2+ signalling in a subclass of taste cells that form synapses with gustatory fibres and may integrate tastant-evoked signals.",
author = "Roberts, {Craig D.} and Gennady Dvoryanchikov and Roper, {Stephen D} and Nirupa Chaudhari",
year = "2009",
month = "4",
day = "15",
doi = "10.1113/jphysiol.2009.170555",
language = "English",
volume = "587",
pages = "1657--1668",
journal = "Journal of Physiology",
issn = "0022-3751",
publisher = "Wiley-Blackwell",
number = "8",

}

TY - JOUR

T1 - Interaction between the second messengers cAMP and Ca2+ in mouse presynaptic taste cells

AU - Roberts, Craig D.

AU - Dvoryanchikov, Gennady

AU - Roper, Stephen D

AU - Chaudhari, Nirupa

PY - 2009/4/15

Y1 - 2009/4/15

N2 - The second messenger, 3′,5′-cyclic adenosine monophosphate (cAMP), is known to be modulated in taste buds following exposure to gustatory and other stimuli. Which taste cell type(s) (Type I/glial-like cells, Type II/receptor cells, or Type III/presynaptic cells) undergo taste-evoked changes of cAMP and what the functional consequences of such changes are remain unknown. Using Fura-2 imaging of isolated mouse vallate taste cells, we explored how elevating cAMP alters Ca2+ levels in identified taste cells. Stimulating taste buds with forskolin (Fsk; 1 μm) + isobutylmethylxanthine (IBMX; 100 μm), which elevates cellular cAMP, triggered Ca2+ transients in 38% of presynaptic cells (n = 128). We used transgenic GAD-GFP mice to show that cAMP-triggered Ca2+ responses occur only in the subset of presynaptic cells that lack glutamic acid decarboxylase 67 (GAD). We never observed cAMP-stimulated responses in receptor cells, glial-like cells or GAD-expressing presynaptic cells. The response to cAMP was blocked by the protein kinase A inhibitor H89 and by removing extracellular Ca2+. Thus, the response to elevated cAMP is a PKA-dependent influx of Ca2+. This Ca2+ influx was blocked by nifedipine (an inhibitor of L-type voltage-gated Ca2+ channels) but was unperturbed by ω-agatoxin IVA and ω-conotoxin GVIA (P/Q-type and N-type channel inhibitors, respectively). Single-cell RT-PCR on functionally identified presynaptic cells from GAD-GFP mice confirmed the pharmacological analyses: Cav1.2 (an L-type subunit) is expressed in cells that display cAMP-triggered Ca2+ influx, while Cav2.1 (a P/Q subunit) is expressed in all presynaptic cells, and underlies depolarization-triggered Ca2+ influx. Collectively, these data demonstrate cross-talk between cAMP and Ca2+ signalling in a subclass of taste cells that form synapses with gustatory fibres and may integrate tastant-evoked signals.

AB - The second messenger, 3′,5′-cyclic adenosine monophosphate (cAMP), is known to be modulated in taste buds following exposure to gustatory and other stimuli. Which taste cell type(s) (Type I/glial-like cells, Type II/receptor cells, or Type III/presynaptic cells) undergo taste-evoked changes of cAMP and what the functional consequences of such changes are remain unknown. Using Fura-2 imaging of isolated mouse vallate taste cells, we explored how elevating cAMP alters Ca2+ levels in identified taste cells. Stimulating taste buds with forskolin (Fsk; 1 μm) + isobutylmethylxanthine (IBMX; 100 μm), which elevates cellular cAMP, triggered Ca2+ transients in 38% of presynaptic cells (n = 128). We used transgenic GAD-GFP mice to show that cAMP-triggered Ca2+ responses occur only in the subset of presynaptic cells that lack glutamic acid decarboxylase 67 (GAD). We never observed cAMP-stimulated responses in receptor cells, glial-like cells or GAD-expressing presynaptic cells. The response to cAMP was blocked by the protein kinase A inhibitor H89 and by removing extracellular Ca2+. Thus, the response to elevated cAMP is a PKA-dependent influx of Ca2+. This Ca2+ influx was blocked by nifedipine (an inhibitor of L-type voltage-gated Ca2+ channels) but was unperturbed by ω-agatoxin IVA and ω-conotoxin GVIA (P/Q-type and N-type channel inhibitors, respectively). Single-cell RT-PCR on functionally identified presynaptic cells from GAD-GFP mice confirmed the pharmacological analyses: Cav1.2 (an L-type subunit) is expressed in cells that display cAMP-triggered Ca2+ influx, while Cav2.1 (a P/Q subunit) is expressed in all presynaptic cells, and underlies depolarization-triggered Ca2+ influx. Collectively, these data demonstrate cross-talk between cAMP and Ca2+ signalling in a subclass of taste cells that form synapses with gustatory fibres and may integrate tastant-evoked signals.

UR - http://www.scopus.com/inward/record.url?scp=65249138108&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=65249138108&partnerID=8YFLogxK

U2 - 10.1113/jphysiol.2009.170555

DO - 10.1113/jphysiol.2009.170555

M3 - Article

C2 - 19221121

AN - SCOPUS:65249138108

VL - 587

SP - 1657

EP - 1668

JO - Journal of Physiology

JF - Journal of Physiology

SN - 0022-3751

IS - 8

ER -