Insight into Pre-Clinical Models of Traumatic Brain Injury Using Circulating Brain Damage Biomarkers: Operation Brain Trauma Therapy

Stefania Mondello, Deborah A. Shear, Helen M. Bramlett, C. Edward Dixon, Kara E. Schmid, W. Dalton Dietrich, Kevin K.W. Wang, Ronald L. Hayes, Olena Glushakova, Michael Catania, Steven P. Richieri, John T. Povlishock, Frank C. Tortella, Patrick M. Kochanek

Research output: Contribution to journalArticle

37 Scopus citations

Abstract

Operation Brain Trauma Therapy (OBTT) is a multicenter pre-clinical drug screening consortium testing promising therapies for traumatic brain injury (TBI) in three well-established models of TBI in rats - namely, parasagittal fluid percussion injury (FPI), controlled cortical impact (CCI), and penetrating ballistic-like brain injury (PBBI). This article presents unique characterization of these models using histological and behavioral outcomes and novel candidate biomarkers from the first three treatment trials of OBTT. Adult rats underwent CCI, FPI, or PBBI and were treated with vehicle (VEH). Shams underwent all manipulations except trauma. The glial marker glial fibrillary acidic protein (GFAP) and the neuronal marker ubiquitin C-terminal hydrolase (UCH-L1) were measured by enzyme-linked immunosorbent assay in blood at 4 and 24 h, and their delta 24-4 h was calculated for each marker. Comparing sham groups across experiments, no differences were found in the same model. Similarly, comparing TBI + VEH groups across experiments, no differences were found in the same model. GFAP was acutely increased in injured rats in each model, with significant differences in levels and temporal patterns mirrored by significant differences in delta 24-4 h GFAP levels and neuropathological and behavioral outcomes. Circulating GFAP levels at 4 and 24 h were powerful predictors of 21 day contusion volume and tissue loss. UCH-L1 showed similar tendencies, albeit with less robust differences between sham and injury groups. Significant differences were also found comparing shams across the models. Our findings (1) demonstrate that TBI models display specific biomarker profiles, functional deficits, and pathological consequence; (2) support the concept that there are different cellular, molecular, and pathophysiological responses to TBI in each model; and (3) advance our understanding of TBI, providing opportunities for a successful translation and holding promise for theranostic applications. Based on our findings, additional studies in pre-clinical models should pursue assessment of GFAP as a surrogate histological and/or theranostic end-point.

Original languageEnglish (US)
Pages (from-to)595-605
Number of pages11
JournalJournal of neurotrauma
Volume33
Issue number6
DOIs
StatePublished - Mar 15 2016

Keywords

  • Morris water maze
  • biomarkers
  • controlled cortical impact
  • fluid percussion injury
  • glial fibrillary acidic protein
  • penetrating ballistic-like brain injury
  • rat
  • theranostic
  • ubiquitin carboxyl-terminal hydrolase-L1

ASJC Scopus subject areas

  • Clinical Neurology

Fingerprint Dive into the research topics of 'Insight into Pre-Clinical Models of Traumatic Brain Injury Using Circulating Brain Damage Biomarkers: Operation Brain Trauma Therapy'. Together they form a unique fingerprint.

  • Cite this

    Mondello, S., Shear, D. A., Bramlett, H. M., Dixon, C. E., Schmid, K. E., Dietrich, W. D., Wang, K. K. W., Hayes, R. L., Glushakova, O., Catania, M., Richieri, S. P., Povlishock, J. T., Tortella, F. C., & Kochanek, P. M. (2016). Insight into Pre-Clinical Models of Traumatic Brain Injury Using Circulating Brain Damage Biomarkers: Operation Brain Trauma Therapy. Journal of neurotrauma, 33(6), 595-605. https://doi.org/10.1089/neu.2015.4132