Influence of pH on the modification of thiols by carbamoylating agents and effects on glutathione levels in normal and neoplastic cells

Jennifer J. Hu, Michele J. Dimaira, Karimullah A. Zirvi, George Dikdan, Michael A. Lea

Research output: Contribution to journalArticle

5 Scopus citations

Abstract

In previous studies, we have suggested that the selective inhibitory effect of sodium cyanate (NaOCN) on hepatoma metabolism may be due to the lower pH observed in tumors relative to normal tissues. Lower pH might enhance the action of NaOCN by increasing the formation of isocyanic acid and carbamoylation of sulfhydryl groups. In the present work, studies were conducted on the effect of pH on the carbamoylation of sulfhydryl groups. The data indicated that carbamoylation of the sulfhydryl group of glutathione by NaOCN was enhanced by decreasing the pH from 7.4 to 6.6. A less pH-dependent response was observed with organic isocyanates. However, all reactions were reversible after the pH was increased by the addition of base. Kinetic studies showed that the rate of the reaction is very rapid, a maximal effect occurring within the first 10 min. Dose-dependent modifications of cellular glutathione by NaOCN and organic isocyanates were observed in human HT29 colon tumor cells, rat HTC hepatoma cells, and rat hepatocytes. The rate of carbamoylation of the glutathione sulfhydryl group in cells was similar to that of pure glutathione (GSH). The effect of buthionine sulfoximine on GSH levels in cells was at least as great as that of sodium cyanate, but only the latter showed inhibitory effects on macromolecular synthesis; these were very rapid, pH-dependent, and reversible in tumor cells. Our results suggest that cellular sulfhydryl group(s) other than that of GSH might be involved in the effect of NaOCN on macromolecular synthesis.

Original languageEnglish (US)
Pages (from-to)95-101
Number of pages7
JournalCancer Chemotherapy And Pharmacology
Volume24
Issue number2
DOIs
StatePublished - Aug 1989

ASJC Scopus subject areas

  • Oncology
  • Toxicology
  • Pharmacology
  • Cancer Research
  • Pharmacology (medical)

Fingerprint Dive into the research topics of 'Influence of pH on the modification of thiols by carbamoylating agents and effects on glutathione levels in normal and neoplastic cells'. Together they form a unique fingerprint.

  • Cite this