Individual-based modeling of populations with high mortality: A new method based on following a fixed number of model individuals

Kenneth A. Rose, Sigurd W. Christensen, Donald L. DeAngelis

Research output: Contribution to journalArticle

43 Citations (Scopus)

Abstract

Individual-based modeling of populations that undergo high mortality can be problematic Large numbers of model individuals must be followed to ensure adequate numbers of survivors at the end of the simulation, but following large numbers of individuals can require excessive computer memory and computational time. Following a sample of individuals from the population partially addresses these problems for short-term simulations but not for model applications requiring long-term predictions. In this paper, we describe a resampling algorithm that permits the long-term simulation of populations undergoing high mortality. A fixed number of model individuals are followed, with each representing some number of identical population individuals. As each model individuals dies, a donor individual by the donor individual is adjusted to represent the loss of individuals due to mortality. The dead individual's attributes are then replaced with those of the donor individual. The high accuracy, reduced memory requirement, and comparable computational costs of the resampling algorithm are demonstrated using an individual-based population model of young-of-the-year striped bass. Differences between predictions without and with resampling were <1.5% of the mean values for a suite of variables. Executable files for versions of the model using resampling were an order of magnitude smaller, and simulations required similar computational costs as versions of the model without resampling. Potential variations of the resampling algorithm to increase the accuracy of predictions of specific variables and to simulate spatially-explicit models are discussed.

Original languageEnglish
Pages (from-to)273-292
Number of pages20
JournalEcological Modelling
Volume68
Issue number3-4
DOIs
StatePublished - Jan 1 1993

Fingerprint

mortality
modeling
methodology
simulation
prediction
method
Morone saxatilis
cost
sampling

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Ecological Modeling
  • Ecology

Cite this

Individual-based modeling of populations with high mortality : A new method based on following a fixed number of model individuals. / Rose, Kenneth A.; Christensen, Sigurd W.; DeAngelis, Donald L.

In: Ecological Modelling, Vol. 68, No. 3-4, 01.01.1993, p. 273-292.

Research output: Contribution to journalArticle

Rose, Kenneth A. ; Christensen, Sigurd W. ; DeAngelis, Donald L. / Individual-based modeling of populations with high mortality : A new method based on following a fixed number of model individuals. In: Ecological Modelling. 1993 ; Vol. 68, No. 3-4. pp. 273-292.
@article{04cfb7e85ef04d69a68cdbdd70001bf5,
title = "Individual-based modeling of populations with high mortality: A new method based on following a fixed number of model individuals",
abstract = "Individual-based modeling of populations that undergo high mortality can be problematic Large numbers of model individuals must be followed to ensure adequate numbers of survivors at the end of the simulation, but following large numbers of individuals can require excessive computer memory and computational time. Following a sample of individuals from the population partially addresses these problems for short-term simulations but not for model applications requiring long-term predictions. In this paper, we describe a resampling algorithm that permits the long-term simulation of populations undergoing high mortality. A fixed number of model individuals are followed, with each representing some number of identical population individuals. As each model individuals dies, a donor individual by the donor individual is adjusted to represent the loss of individuals due to mortality. The dead individual's attributes are then replaced with those of the donor individual. The high accuracy, reduced memory requirement, and comparable computational costs of the resampling algorithm are demonstrated using an individual-based population model of young-of-the-year striped bass. Differences between predictions without and with resampling were <1.5{\%} of the mean values for a suite of variables. Executable files for versions of the model using resampling were an order of magnitude smaller, and simulations required similar computational costs as versions of the model without resampling. Potential variations of the resampling algorithm to increase the accuracy of predictions of specific variables and to simulate spatially-explicit models are discussed.",
author = "Rose, {Kenneth A.} and Christensen, {Sigurd W.} and DeAngelis, {Donald L.}",
year = "1993",
month = "1",
day = "1",
doi = "10.1016/0304-3800(93)90022-K",
language = "English",
volume = "68",
pages = "273--292",
journal = "Ecological Modelling",
issn = "0304-3800",
publisher = "Elsevier",
number = "3-4",

}

TY - JOUR

T1 - Individual-based modeling of populations with high mortality

T2 - A new method based on following a fixed number of model individuals

AU - Rose, Kenneth A.

AU - Christensen, Sigurd W.

AU - DeAngelis, Donald L.

PY - 1993/1/1

Y1 - 1993/1/1

N2 - Individual-based modeling of populations that undergo high mortality can be problematic Large numbers of model individuals must be followed to ensure adequate numbers of survivors at the end of the simulation, but following large numbers of individuals can require excessive computer memory and computational time. Following a sample of individuals from the population partially addresses these problems for short-term simulations but not for model applications requiring long-term predictions. In this paper, we describe a resampling algorithm that permits the long-term simulation of populations undergoing high mortality. A fixed number of model individuals are followed, with each representing some number of identical population individuals. As each model individuals dies, a donor individual by the donor individual is adjusted to represent the loss of individuals due to mortality. The dead individual's attributes are then replaced with those of the donor individual. The high accuracy, reduced memory requirement, and comparable computational costs of the resampling algorithm are demonstrated using an individual-based population model of young-of-the-year striped bass. Differences between predictions without and with resampling were <1.5% of the mean values for a suite of variables. Executable files for versions of the model using resampling were an order of magnitude smaller, and simulations required similar computational costs as versions of the model without resampling. Potential variations of the resampling algorithm to increase the accuracy of predictions of specific variables and to simulate spatially-explicit models are discussed.

AB - Individual-based modeling of populations that undergo high mortality can be problematic Large numbers of model individuals must be followed to ensure adequate numbers of survivors at the end of the simulation, but following large numbers of individuals can require excessive computer memory and computational time. Following a sample of individuals from the population partially addresses these problems for short-term simulations but not for model applications requiring long-term predictions. In this paper, we describe a resampling algorithm that permits the long-term simulation of populations undergoing high mortality. A fixed number of model individuals are followed, with each representing some number of identical population individuals. As each model individuals dies, a donor individual by the donor individual is adjusted to represent the loss of individuals due to mortality. The dead individual's attributes are then replaced with those of the donor individual. The high accuracy, reduced memory requirement, and comparable computational costs of the resampling algorithm are demonstrated using an individual-based population model of young-of-the-year striped bass. Differences between predictions without and with resampling were <1.5% of the mean values for a suite of variables. Executable files for versions of the model using resampling were an order of magnitude smaller, and simulations required similar computational costs as versions of the model without resampling. Potential variations of the resampling algorithm to increase the accuracy of predictions of specific variables and to simulate spatially-explicit models are discussed.

UR - http://www.scopus.com/inward/record.url?scp=0027802778&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027802778&partnerID=8YFLogxK

U2 - 10.1016/0304-3800(93)90022-K

DO - 10.1016/0304-3800(93)90022-K

M3 - Article

AN - SCOPUS:0027802778

VL - 68

SP - 273

EP - 292

JO - Ecological Modelling

JF - Ecological Modelling

SN - 0304-3800

IS - 3-4

ER -