Incentive-compatible demand-side management for smart grids based on review strategies

Jie Xu, Mihaela van der Schaar

Research output: Contribution to journalArticle

Abstract

Demand-side load management is able to significantly improve the energy efficiency of smart grids. Since the electricity production cost depends on the aggregate energy usage of multiple consumers, an important incentive problem emerges: self-interested consumers want to increase their own utilities by consuming more than the socially optimal amount of energy during peak hours since the increased cost is shared among the entire set of consumers. To incentivize self-interested consumers to take the socially optimal scheduling actions, we design a new class of protocols based on review strategies. These strategies work as follows: first, a review stage takes place in which a statistical test is performed based on the daily prices of the previous billing cycle to determine whether or not the other consumers schedule their electricity loads in a socially optimal way. If the test fails, the consumers trigger a punishment phase in which, for a certain time, they adjust their energy scheduling in such a way that everybody in the consumer set is punished due to an increased price. Using a carefully designed protocol based on such review strategies, consumers then have incentives to take the socially optimal load scheduling to avoid entering this punishment phase. We rigorously characterize the impact of deploying protocols based on review strategies on the system’s as well as the users’ performance and determine the optimal design (optimal billing cycle, punishment length, etc.) for various smart grid deployment scenarios. Even though this paper considers a simplified smart grid model, our analysis provides important and useful insights for designing incentive-compatible demand-side management schemes based on aggregate energy usage information in a variety of practical scenarios.

Original languageEnglish (US)
Article number51
JournalEurasip Journal on Advances in Signal Processing
Volume2015
Issue number1
DOIs
StatePublished - Dec 27 2015
Externally publishedYes

Fingerprint

Scheduling
Electricity
Statistical tests
Energy efficiency
Costs
Demand side management
Optimal design

ASJC Scopus subject areas

  • Hardware and Architecture
  • Signal Processing
  • Electrical and Electronic Engineering

Cite this

Incentive-compatible demand-side management for smart grids based on review strategies. / Xu, Jie; van der Schaar, Mihaela.

In: Eurasip Journal on Advances in Signal Processing, Vol. 2015, No. 1, 51, 27.12.2015.

Research output: Contribution to journalArticle

@article{60e48bf1b1ea4ea19ddaa35f1d2ae58b,
title = "Incentive-compatible demand-side management for smart grids based on review strategies",
abstract = "Demand-side load management is able to significantly improve the energy efficiency of smart grids. Since the electricity production cost depends on the aggregate energy usage of multiple consumers, an important incentive problem emerges: self-interested consumers want to increase their own utilities by consuming more than the socially optimal amount of energy during peak hours since the increased cost is shared among the entire set of consumers. To incentivize self-interested consumers to take the socially optimal scheduling actions, we design a new class of protocols based on review strategies. These strategies work as follows: first, a review stage takes place in which a statistical test is performed based on the daily prices of the previous billing cycle to determine whether or not the other consumers schedule their electricity loads in a socially optimal way. If the test fails, the consumers trigger a punishment phase in which, for a certain time, they adjust their energy scheduling in such a way that everybody in the consumer set is punished due to an increased price. Using a carefully designed protocol based on such review strategies, consumers then have incentives to take the socially optimal load scheduling to avoid entering this punishment phase. We rigorously characterize the impact of deploying protocols based on review strategies on the system’s as well as the users’ performance and determine the optimal design (optimal billing cycle, punishment length, etc.) for various smart grid deployment scenarios. Even though this paper considers a simplified smart grid model, our analysis provides important and useful insights for designing incentive-compatible demand-side management schemes based on aggregate energy usage information in a variety of practical scenarios.",
author = "Jie Xu and {van der Schaar}, Mihaela",
year = "2015",
month = "12",
day = "27",
doi = "10.1186/s13634-015-0235-9",
language = "English (US)",
volume = "2015",
journal = "Eurasip Journal on Advances in Signal Processing",
issn = "1687-6172",
publisher = "Springer Publishing Company",
number = "1",

}

TY - JOUR

T1 - Incentive-compatible demand-side management for smart grids based on review strategies

AU - Xu, Jie

AU - van der Schaar, Mihaela

PY - 2015/12/27

Y1 - 2015/12/27

N2 - Demand-side load management is able to significantly improve the energy efficiency of smart grids. Since the electricity production cost depends on the aggregate energy usage of multiple consumers, an important incentive problem emerges: self-interested consumers want to increase their own utilities by consuming more than the socially optimal amount of energy during peak hours since the increased cost is shared among the entire set of consumers. To incentivize self-interested consumers to take the socially optimal scheduling actions, we design a new class of protocols based on review strategies. These strategies work as follows: first, a review stage takes place in which a statistical test is performed based on the daily prices of the previous billing cycle to determine whether or not the other consumers schedule their electricity loads in a socially optimal way. If the test fails, the consumers trigger a punishment phase in which, for a certain time, they adjust their energy scheduling in such a way that everybody in the consumer set is punished due to an increased price. Using a carefully designed protocol based on such review strategies, consumers then have incentives to take the socially optimal load scheduling to avoid entering this punishment phase. We rigorously characterize the impact of deploying protocols based on review strategies on the system’s as well as the users’ performance and determine the optimal design (optimal billing cycle, punishment length, etc.) for various smart grid deployment scenarios. Even though this paper considers a simplified smart grid model, our analysis provides important and useful insights for designing incentive-compatible demand-side management schemes based on aggregate energy usage information in a variety of practical scenarios.

AB - Demand-side load management is able to significantly improve the energy efficiency of smart grids. Since the electricity production cost depends on the aggregate energy usage of multiple consumers, an important incentive problem emerges: self-interested consumers want to increase their own utilities by consuming more than the socially optimal amount of energy during peak hours since the increased cost is shared among the entire set of consumers. To incentivize self-interested consumers to take the socially optimal scheduling actions, we design a new class of protocols based on review strategies. These strategies work as follows: first, a review stage takes place in which a statistical test is performed based on the daily prices of the previous billing cycle to determine whether or not the other consumers schedule their electricity loads in a socially optimal way. If the test fails, the consumers trigger a punishment phase in which, for a certain time, they adjust their energy scheduling in such a way that everybody in the consumer set is punished due to an increased price. Using a carefully designed protocol based on such review strategies, consumers then have incentives to take the socially optimal load scheduling to avoid entering this punishment phase. We rigorously characterize the impact of deploying protocols based on review strategies on the system’s as well as the users’ performance and determine the optimal design (optimal billing cycle, punishment length, etc.) for various smart grid deployment scenarios. Even though this paper considers a simplified smart grid model, our analysis provides important and useful insights for designing incentive-compatible demand-side management schemes based on aggregate energy usage information in a variety of practical scenarios.

UR - http://www.scopus.com/inward/record.url?scp=84932617369&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84932617369&partnerID=8YFLogxK

U2 - 10.1186/s13634-015-0235-9

DO - 10.1186/s13634-015-0235-9

M3 - Article

AN - SCOPUS:84932617369

VL - 2015

JO - Eurasip Journal on Advances in Signal Processing

JF - Eurasip Journal on Advances in Signal Processing

SN - 1687-6172

IS - 1

M1 - 51

ER -