In vivo passive mechanical properties of skeletal muscle improve with massage-like loading following eccentric exercise

Caroline Haas, Thomas M. Best, Qian Wang, Timothy A. Butterfield, Yi Zhao

Research output: Contribution to journalArticle

27 Scopus citations

Abstract

A quasi-linear viscoelasticity (QLV) model was used to study passive time-dependent responses of skeletal muscle to repeated massage-like compressive loading (MLL) following damaging eccentric exercise. Six skeletally mature rabbits were surgically instrumented with bilateral peroneal nerve cuffs for stimulation of the hindlimb tibialis anterior (TA) muscles. Following the eccentric exercise, rabbits were randomly assigned to a four-day MLL protocol mimicking deep effleurage (0.5Hz, 10N for 15min or for 30min). The contralateral hindlimb served as the exercised, no-MLL control for both MLL conditions. Viscoelastic properties of the muscle pre-exercise, post-exercise on Day 1, and pre- and post-MLL Day 1 through Day 4 were determined with ramp-and-hold tests. The instantaneous elastic response (AG0) increased following exercise (p<0.05) and decreased due to both the 15min and 30min four-day MLL protocols (p<0.05). Post-four days of MLL the normalized AG0 decreased from post-exercise (Day 1, 248.5%) to the post-MLL (Day 4, 98.5%) (p<0.05), compared to the no-MLL group (Day 4, 222.0%) (p<0.05). Exercise and four-day MLL showed no acute or cumulative effects on the fast and slow relaxation coefficients (p>0.05). This is the first experimental evidence of the effect of both acute (daily) and cumulative changes in viscoelastic properties of intensely exercised muscle due to ex vivo MLL. It provides a starting point for correlating passive muscle properties with mechanical effects of manual therapies, and may shed light on design and optimization of massage protocols.

Original languageEnglish (US)
Pages (from-to)2630-2636
Number of pages7
JournalJournal of Biomechanics
Volume45
Issue number15
DOIs
StatePublished - Oct 11 2012
Externally publishedYes

    Fingerprint

Keywords

  • Compressive loading
  • Manual therapy
  • Skeletal muscle
  • Viscoelasticity

ASJC Scopus subject areas

  • Biophysics
  • Orthopedics and Sports Medicine
  • Biomedical Engineering
  • Rehabilitation

Cite this