Impaired pulmonary conversion of angiotensin I to angiotensin II in rats exposed to chronic hypoxia

Robert Jackson, A. J. Narkates, S. Oparil

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

The effects of exposing rats to hypoxia at normal atmospheric pressure for periods of 21-24 days on intrapulmonary conversion of angiotensin I (ANG I) to angiotensin II (ANG II) were examined using an isolated rat lung preparation perfused at constant flow. 125I-ANG I (160 fmol) was injected alone and with graded doses (0.1, 1.0, and 100 nmol) of unlabeled ANG I into the pulmonary artery, and the effluent was collected for measurement of ANG I, ANG II, and metabolites. At low doses of injected ANG I (125I-ANG I alone or with 0.1 to 1.0 nmol unlabeled ANG I), the percent conversion of ANG I to ANG II was 67.5 ± 2.1 (SE), 65.1 ± 2.0, and 62.5 ± 1.6 in 21-day hypoxia-exposed animals and 83.8 ± 2.7, 81.4 ± 3.9, and 79.6 ± 2.3 (P < 0.01) in control rats maintained under normoxic conditions. At the highest dose (100 nmol) of injected ANG I, percent conversion was reduced in both hypoxic and control groups to 46.8 ± 5.0 and 64.0 ± 6.0, respectively (P < 0.05). Mean transit times of labeled material through the pulmonary circulation were not significantly different in hypoxic vs. normoxic lungs at any ANG I load, suggesting that the decreased conversion seen in hypoxic lungs was not related to altered kinetics of substrate exposure. Thus chronic hypoxia is associated with significant inhibition of transpulmonary ANG I conversion that is independent of perfusate flow. We postulate that this phenomenon is due to alterations at the endothelial membrane level.

Original languageEnglish
Pages (from-to)1121-1127
Number of pages7
JournalJournal of Applied Physiology
Volume60
Issue number4
StatePublished - Jan 1 1986
Externally publishedYes

Fingerprint

Angiotensin I
Angiotensin II
Lung
Hypoxia
Atmospheric Pressure
Pulmonary Circulation
Pulmonary Artery

ASJC Scopus subject areas

  • Endocrinology
  • Physiology
  • Orthopedics and Sports Medicine
  • Physical Therapy, Sports Therapy and Rehabilitation

Cite this

Impaired pulmonary conversion of angiotensin I to angiotensin II in rats exposed to chronic hypoxia. / Jackson, Robert; Narkates, A. J.; Oparil, S.

In: Journal of Applied Physiology, Vol. 60, No. 4, 01.01.1986, p. 1121-1127.

Research output: Contribution to journalArticle

@article{d53851f18be94d69bfafeda21522217f,
title = "Impaired pulmonary conversion of angiotensin I to angiotensin II in rats exposed to chronic hypoxia",
abstract = "The effects of exposing rats to hypoxia at normal atmospheric pressure for periods of 21-24 days on intrapulmonary conversion of angiotensin I (ANG I) to angiotensin II (ANG II) were examined using an isolated rat lung preparation perfused at constant flow. 125I-ANG I (160 fmol) was injected alone and with graded doses (0.1, 1.0, and 100 nmol) of unlabeled ANG I into the pulmonary artery, and the effluent was collected for measurement of ANG I, ANG II, and metabolites. At low doses of injected ANG I (125I-ANG I alone or with 0.1 to 1.0 nmol unlabeled ANG I), the percent conversion of ANG I to ANG II was 67.5 ± 2.1 (SE), 65.1 ± 2.0, and 62.5 ± 1.6 in 21-day hypoxia-exposed animals and 83.8 ± 2.7, 81.4 ± 3.9, and 79.6 ± 2.3 (P < 0.01) in control rats maintained under normoxic conditions. At the highest dose (100 nmol) of injected ANG I, percent conversion was reduced in both hypoxic and control groups to 46.8 ± 5.0 and 64.0 ± 6.0, respectively (P < 0.05). Mean transit times of labeled material through the pulmonary circulation were not significantly different in hypoxic vs. normoxic lungs at any ANG I load, suggesting that the decreased conversion seen in hypoxic lungs was not related to altered kinetics of substrate exposure. Thus chronic hypoxia is associated with significant inhibition of transpulmonary ANG I conversion that is independent of perfusate flow. We postulate that this phenomenon is due to alterations at the endothelial membrane level.",
author = "Robert Jackson and Narkates, {A. J.} and S. Oparil",
year = "1986",
month = "1",
day = "1",
language = "English",
volume = "60",
pages = "1121--1127",
journal = "Journal of Applied Physiology",
issn = "8750-7587",
publisher = "American Physiological Society",
number = "4",

}

TY - JOUR

T1 - Impaired pulmonary conversion of angiotensin I to angiotensin II in rats exposed to chronic hypoxia

AU - Jackson, Robert

AU - Narkates, A. J.

AU - Oparil, S.

PY - 1986/1/1

Y1 - 1986/1/1

N2 - The effects of exposing rats to hypoxia at normal atmospheric pressure for periods of 21-24 days on intrapulmonary conversion of angiotensin I (ANG I) to angiotensin II (ANG II) were examined using an isolated rat lung preparation perfused at constant flow. 125I-ANG I (160 fmol) was injected alone and with graded doses (0.1, 1.0, and 100 nmol) of unlabeled ANG I into the pulmonary artery, and the effluent was collected for measurement of ANG I, ANG II, and metabolites. At low doses of injected ANG I (125I-ANG I alone or with 0.1 to 1.0 nmol unlabeled ANG I), the percent conversion of ANG I to ANG II was 67.5 ± 2.1 (SE), 65.1 ± 2.0, and 62.5 ± 1.6 in 21-day hypoxia-exposed animals and 83.8 ± 2.7, 81.4 ± 3.9, and 79.6 ± 2.3 (P < 0.01) in control rats maintained under normoxic conditions. At the highest dose (100 nmol) of injected ANG I, percent conversion was reduced in both hypoxic and control groups to 46.8 ± 5.0 and 64.0 ± 6.0, respectively (P < 0.05). Mean transit times of labeled material through the pulmonary circulation were not significantly different in hypoxic vs. normoxic lungs at any ANG I load, suggesting that the decreased conversion seen in hypoxic lungs was not related to altered kinetics of substrate exposure. Thus chronic hypoxia is associated with significant inhibition of transpulmonary ANG I conversion that is independent of perfusate flow. We postulate that this phenomenon is due to alterations at the endothelial membrane level.

AB - The effects of exposing rats to hypoxia at normal atmospheric pressure for periods of 21-24 days on intrapulmonary conversion of angiotensin I (ANG I) to angiotensin II (ANG II) were examined using an isolated rat lung preparation perfused at constant flow. 125I-ANG I (160 fmol) was injected alone and with graded doses (0.1, 1.0, and 100 nmol) of unlabeled ANG I into the pulmonary artery, and the effluent was collected for measurement of ANG I, ANG II, and metabolites. At low doses of injected ANG I (125I-ANG I alone or with 0.1 to 1.0 nmol unlabeled ANG I), the percent conversion of ANG I to ANG II was 67.5 ± 2.1 (SE), 65.1 ± 2.0, and 62.5 ± 1.6 in 21-day hypoxia-exposed animals and 83.8 ± 2.7, 81.4 ± 3.9, and 79.6 ± 2.3 (P < 0.01) in control rats maintained under normoxic conditions. At the highest dose (100 nmol) of injected ANG I, percent conversion was reduced in both hypoxic and control groups to 46.8 ± 5.0 and 64.0 ± 6.0, respectively (P < 0.05). Mean transit times of labeled material through the pulmonary circulation were not significantly different in hypoxic vs. normoxic lungs at any ANG I load, suggesting that the decreased conversion seen in hypoxic lungs was not related to altered kinetics of substrate exposure. Thus chronic hypoxia is associated with significant inhibition of transpulmonary ANG I conversion that is independent of perfusate flow. We postulate that this phenomenon is due to alterations at the endothelial membrane level.

UR - http://www.scopus.com/inward/record.url?scp=0022549666&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0022549666&partnerID=8YFLogxK

M3 - Article

C2 - 3009385

AN - SCOPUS:0022549666

VL - 60

SP - 1121

EP - 1127

JO - Journal of Applied Physiology

JF - Journal of Applied Physiology

SN - 8750-7587

IS - 4

ER -