Immunotherapy trials for type 1 diabetes

The contribution of George Eisenbarth

Research output: Contribution to journalArticle

Abstract

Type 1 diabetes (T1D) results from the autoimmune destruction of pancreatic β-cells, and as such it should respond to immunotherapy. George Eisenbarth gave many significant contributions to this field. He has been involved at some level in most immunotherapy trials during the past three decades. He was among the pioneers who attempted immunotherapy approaches in patients with recent-onset T1D. In the early 1980s he began studying relatives of those with the disease, leading to the concept that T1D was a chronic autoimmune disease, in which islet autoimmune responses would silently destroy β-cells and cause progressive impairment of insulin secretion, years to months before a diagnosis was made. Consequently, he was one of the first to attempt immune intervention in people at high risk of T1D. Throughout his career he developed autoantibody assays and predictive models (which included metabolic testing and later genetics) to identify individuals at risk of T1D. He provided seminal intellectual contributions and critical tools for prevention trials. His focus on insulin as a critical autoantigen led to multiple prevention trials, including the Diabetes Prevention Trial-Type 1 (DPT-1), which studied both parenteral and oral insulin. In the DPT-1 Oral Insulin Trial, a cohort with higher levels of insulin autoantibodies was identified that appeared to have delayed disease progression. Type 1 Diabetes TrialNet is conducting a new trial to verify or refute this observation. Moreover, George identified and tested in the mouse small molecules that block or modulate presentation of a key insulin peptide and in turn prevent the activation of insulin-specific T-lymphocytes. Thus, we believe his greatest contribution is yet to come, as in the near future we should see this most recent work translate into clinical trials.

Original languageEnglish
JournalDiabetes Technology and Therapeutics
Volume15
Issue numberSUPPL.2
DOIs
StatePublished - Jul 8 2013

Fingerprint

Type 1 Diabetes Mellitus
Immunotherapy
Insulin
Autoantibodies
Genetic Testing
Autoimmunity
Autoimmune Diseases
Disease Progression
Chronic Disease
Clinical Trials
T-Lymphocytes
Peptides

ASJC Scopus subject areas

  • Endocrinology
  • Endocrinology, Diabetes and Metabolism
  • Medical Laboratory Technology

Cite this

@article{e8928c0af3e64cdbb98765ad67dcfa93,
title = "Immunotherapy trials for type 1 diabetes: The contribution of George Eisenbarth",
abstract = "Type 1 diabetes (T1D) results from the autoimmune destruction of pancreatic β-cells, and as such it should respond to immunotherapy. George Eisenbarth gave many significant contributions to this field. He has been involved at some level in most immunotherapy trials during the past three decades. He was among the pioneers who attempted immunotherapy approaches in patients with recent-onset T1D. In the early 1980s he began studying relatives of those with the disease, leading to the concept that T1D was a chronic autoimmune disease, in which islet autoimmune responses would silently destroy β-cells and cause progressive impairment of insulin secretion, years to months before a diagnosis was made. Consequently, he was one of the first to attempt immune intervention in people at high risk of T1D. Throughout his career he developed autoantibody assays and predictive models (which included metabolic testing and later genetics) to identify individuals at risk of T1D. He provided seminal intellectual contributions and critical tools for prevention trials. His focus on insulin as a critical autoantigen led to multiple prevention trials, including the Diabetes Prevention Trial-Type 1 (DPT-1), which studied both parenteral and oral insulin. In the DPT-1 Oral Insulin Trial, a cohort with higher levels of insulin autoantibodies was identified that appeared to have delayed disease progression. Type 1 Diabetes TrialNet is conducting a new trial to verify or refute this observation. Moreover, George identified and tested in the mouse small molecules that block or modulate presentation of a key insulin peptide and in turn prevent the activation of insulin-specific T-lymphocytes. Thus, we believe his greatest contribution is yet to come, as in the near future we should see this most recent work translate into clinical trials.",
author = "Skyler, {Jay S.} and Alberto Pugliese",
year = "2013",
month = "7",
day = "8",
doi = "10.1089/dia.2013.0107",
language = "English",
volume = "15",
journal = "Diabetes Technology and Therapeutics",
issn = "1520-9156",
publisher = "Mary Ann Liebert Inc.",
number = "SUPPL.2",

}

TY - JOUR

T1 - Immunotherapy trials for type 1 diabetes

T2 - The contribution of George Eisenbarth

AU - Skyler, Jay S.

AU - Pugliese, Alberto

PY - 2013/7/8

Y1 - 2013/7/8

N2 - Type 1 diabetes (T1D) results from the autoimmune destruction of pancreatic β-cells, and as such it should respond to immunotherapy. George Eisenbarth gave many significant contributions to this field. He has been involved at some level in most immunotherapy trials during the past three decades. He was among the pioneers who attempted immunotherapy approaches in patients with recent-onset T1D. In the early 1980s he began studying relatives of those with the disease, leading to the concept that T1D was a chronic autoimmune disease, in which islet autoimmune responses would silently destroy β-cells and cause progressive impairment of insulin secretion, years to months before a diagnosis was made. Consequently, he was one of the first to attempt immune intervention in people at high risk of T1D. Throughout his career he developed autoantibody assays and predictive models (which included metabolic testing and later genetics) to identify individuals at risk of T1D. He provided seminal intellectual contributions and critical tools for prevention trials. His focus on insulin as a critical autoantigen led to multiple prevention trials, including the Diabetes Prevention Trial-Type 1 (DPT-1), which studied both parenteral and oral insulin. In the DPT-1 Oral Insulin Trial, a cohort with higher levels of insulin autoantibodies was identified that appeared to have delayed disease progression. Type 1 Diabetes TrialNet is conducting a new trial to verify or refute this observation. Moreover, George identified and tested in the mouse small molecules that block or modulate presentation of a key insulin peptide and in turn prevent the activation of insulin-specific T-lymphocytes. Thus, we believe his greatest contribution is yet to come, as in the near future we should see this most recent work translate into clinical trials.

AB - Type 1 diabetes (T1D) results from the autoimmune destruction of pancreatic β-cells, and as such it should respond to immunotherapy. George Eisenbarth gave many significant contributions to this field. He has been involved at some level in most immunotherapy trials during the past three decades. He was among the pioneers who attempted immunotherapy approaches in patients with recent-onset T1D. In the early 1980s he began studying relatives of those with the disease, leading to the concept that T1D was a chronic autoimmune disease, in which islet autoimmune responses would silently destroy β-cells and cause progressive impairment of insulin secretion, years to months before a diagnosis was made. Consequently, he was one of the first to attempt immune intervention in people at high risk of T1D. Throughout his career he developed autoantibody assays and predictive models (which included metabolic testing and later genetics) to identify individuals at risk of T1D. He provided seminal intellectual contributions and critical tools for prevention trials. His focus on insulin as a critical autoantigen led to multiple prevention trials, including the Diabetes Prevention Trial-Type 1 (DPT-1), which studied both parenteral and oral insulin. In the DPT-1 Oral Insulin Trial, a cohort with higher levels of insulin autoantibodies was identified that appeared to have delayed disease progression. Type 1 Diabetes TrialNet is conducting a new trial to verify or refute this observation. Moreover, George identified and tested in the mouse small molecules that block or modulate presentation of a key insulin peptide and in turn prevent the activation of insulin-specific T-lymphocytes. Thus, we believe his greatest contribution is yet to come, as in the near future we should see this most recent work translate into clinical trials.

UR - http://www.scopus.com/inward/record.url?scp=84879619983&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84879619983&partnerID=8YFLogxK

U2 - 10.1089/dia.2013.0107

DO - 10.1089/dia.2013.0107

M3 - Article

VL - 15

JO - Diabetes Technology and Therapeutics

JF - Diabetes Technology and Therapeutics

SN - 1520-9156

IS - SUPPL.2

ER -