Human immunodeficiency virus and simian immunodeficiency virus maintain high levels of infectivity in the complete absence of mucin-type O-glycosylation

James M. Termini, Elizabeth S. Church, Zachary A. Silver, Stuart M. Haslam, Anne Dell, Ronald Charles Desrosiers

Research output: Contribution to journalArticle

3 Scopus citations


A highly conserved threonine near the C terminus of gp120 of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) was investigated for its contributions to envelope protein function and virion infectivity. When this highly conserved Thr residue was substituted with anything other than serine (the other amino acid that can accept O-glycosylation), the resulting virus was noninfectious. We found that this Thr was critical for the association of gp120 with the virion and that amino acid substitution increased the amount of dissociated gp120 in the cell culture supernatant. When HIV virions were generated in cells overexpressing polypeptide N-acetylgalactosaminyltransferase 1 (GalNAcT1), viral infectivity was increased 2.5-fold compared to that of virus produced in wildtype HEK293T cells; infectivity was increased 8-fold when the Thr499Ser mutant was used. These infectivity enhancements were not observed when GalNAcT3 was used. Using HEK293T knockout cell lines totally devoid of the ability to perform O-linked glycosylation, we demonstrated production of normal levels of virions and normal levels of infectivity in the complete absence of O-linked carbohydrate. Our data indicate that O-glycosylation is not necessary for the natural replication cycle of HIV and SIV. Nonetheless, it remains theoretically possible that the repertoire of GalNAc transferase isoforms in natural target cells for HIV and SIV in vivo could result in O-glycosylation of the threonine residue in question and that this could boost the infectivity of virions beyond the levels seen in the absence of such O-glycosylation.

Original languageEnglish (US)
Article numbere01228-17
JournalJournal of Virology
Issue number19
StatePublished - Oct 1 2017



  • Envelope
  • Glycosylation
  • gp120
  • Human immunodeficiency virus
  • Infectivity
  • O-linked glycosylation
  • Simian immunodeficiency virus

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Cite this