Abstract
Three-species food-chain models, in which the prey population exhibits group defense, are considered. Using the carrying capacity of the environment as the bifurcation parameter, it is shown that the model without delay undergoes a sequence of Hopf bifurcations. In the model with delay it is shown that using a delay as a bifurcation parameter, a Hopf bifurcation can also occur in this case. These occurrences may be interpreted as showing that a region of local stability (survival) may exist even though the positive steady states are unstable. A computer code BIFDD is used to determine the stability of the bifurcation solutions of a delay model.
Original language | English (US) |
---|---|
Pages (from-to) | 73-87 |
Number of pages | 15 |
Journal | Mathematical Biosciences |
Volume | 111 |
Issue number | 1 |
DOIs | |
State | Published - Sep 1992 |
Externally published | Yes |
ASJC Scopus subject areas
- Statistics and Probability
- Modeling and Simulation
- Biochemistry, Genetics and Molecular Biology(all)
- Immunology and Microbiology(all)
- Agricultural and Biological Sciences(all)
- Applied Mathematics