High-resolution magnetic resonance imaging to characterize the geometry of fatigued porcine bioprosthetic heart valves

D. B. Smith, Michael S. Sacks, P. M. Pattany, R. Schroeder

Research output: Contribution to journalArticlepeer-review

26 Scopus citations


Background and aims of the study: Porcine bioprosthetic heart valves (PBHV) continue to suffer from limited long-term durability. Failure of PBHV occurs mainly in the cusps and is characterized by mechanical damage, usually in conjunction with calcification. Mechanisms underlying calcification have received considerable attention, yet mechanical damage phenomena remain poorly understood. The structural response of PBHV cusps to in-vivo cyclic loading involves three primary factors: (i) mechanical properties; (ii) fiber architecture; and (iii) 3D geometry. Previous finite element studies have shown cuspal stress distribution to be highly sensitive to subtle changes in geometry, yet to date, cusp geometry has been largely ignored in studies of PBHV durability. Methods: A non-destructive method was developed to quantify PBHV 3D geometry using high-resolution magnetic resonance (MR) imaging. Images were obtained in three orthogonal planes from virgin and accelerated tested (50 x 10 6 and 200 x 10 6 cycles) PBHVs to fully capture 3D cuspal geometry. Surface curvatures were computed using a local biquadric surface patch approach. Results: Results indicated a tendency for cusps to permanently deform with accelerated testing, manifesting primarily as sagging of the cusp. This sagging induced areas of high curvature from the central belly region upwards to the nodulus of Aranti, corresponding to known locations of tissue failure. Conclusions: It is likely that the observed changes in cuspal geometry induce deleterious alterations in the stress distribution, independent of those related to mechanical properties and fiber structure, and contribute to valve failure. Our results suggest that PBHV designers should attempt to compensate for the deleterious geometric changes that occur post-implantation.

Original languageEnglish (US)
Pages (from-to)424-432
Number of pages9
JournalJournal of Heart Valve Disease
Issue number4
StatePublished - Jul 1997

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine


Dive into the research topics of 'High-resolution magnetic resonance imaging to characterize the geometry of fatigued porcine bioprosthetic heart valves'. Together they form a unique fingerprint.

Cite this