High Ca2+ concentrations induce a low activity mode and reveal Ca2(+)-independent long shut intervals in BK channels from rat muscle.

B. S. Rothberg, R. A. Bello, L. Song, K. L. Magleby

Research output: Contribution to journalArticle

Abstract

1. Large-conductance calcium-activated K+ channels (BK channels) often display long closed intervals at higher levels of Ca2+. To gain further insight into possible mechanisms for these intervals, currents were recorded from single BK channels, using the patch clamp technique, from patches of membrane excised from primary cultures of rat skeletal muscle. 2. High intracellular calcium concentrations ([Ca2+]i; 10-1000 microM) induced a low activity mode and revealed isolated long shut intervals. Neither of these phenomena were due to the Ba2+ that typically contaminates reagent grade salts. 3. The low activity mode was characterized by typically single brief open intervals with mean durations of 0.1 ms, separated by long shut intervals with mean durations of 100 ms. The very low open probability of about 0.001 during the low activity mode would make a sojourn to this mode functionally equivalent to a sojourn to an inactive state. The durations of sojourns in the low activity mode were exponentially distributed, with the mean durations ranging from about 1 s in 10 microM Ca(i)2+, to 4.5 s in 1000 microM Ca(i)2+. With increased filtering, the brief open intervals would escape detection so that a sojourn to the low activity mode would appear as a single shut interval. A typical channel spent less than 5% of its time in the low activity mode for [Ca2+]i < 10 microM. This increased to about 30% for [Ca2+]i > 100-1000 microM. A kinetic model with three closed states and two open states could approximate the gating of the low activity mode. 4. The isolated long shut intervals were not from the low activity mode, suggesting a different underlying mechanism. Their frequency of occurrence of about 0.3 s-1 did not increase with increasing [Ca2+]i, indicating that they did not arise from a slow Ca2+ block. Their durations were exponentially distributed, with a mean of 127 ms, which was independent of [Ca2+]i, suggesting that a single Ca(2+)-independent closed state or block underlies the isolated long shut intervals. At higher [Ca2+]i, up to 60% of the shut time could be spent in the isolated long shut intervals. 5. These observations suggest that activation of BK channels by high [Ca2+]i can be limited by sojourns to a low activity mode and also by isolated long shut intervals, two additional phenomena that will have to be accounted for in the gating of BK channels.

Original languageEnglish
JournalThe Journal of Physiology
Volume493
StatePublished - Jun 15 1996

Fingerprint

Large-Conductance Calcium-Activated Potassium Channels
Muscles
Calcium-Activated Potassium Channels
Patch-Clamp Techniques
Skeletal Muscle
Salts
Calcium
Membranes

ASJC Scopus subject areas

  • Physiology

Cite this

High Ca2+ concentrations induce a low activity mode and reveal Ca2(+)-independent long shut intervals in BK channels from rat muscle. / Rothberg, B. S.; Bello, R. A.; Song, L.; Magleby, K. L.

In: The Journal of Physiology, Vol. 493, 15.06.1996.

Research output: Contribution to journalArticle

@article{bcad0eaa465a4fff80c2370c52626871,
title = "High Ca2+ concentrations induce a low activity mode and reveal Ca2(+)-independent long shut intervals in BK channels from rat muscle.",
abstract = "1. Large-conductance calcium-activated K+ channels (BK channels) often display long closed intervals at higher levels of Ca2+. To gain further insight into possible mechanisms for these intervals, currents were recorded from single BK channels, using the patch clamp technique, from patches of membrane excised from primary cultures of rat skeletal muscle. 2. High intracellular calcium concentrations ([Ca2+]i; 10-1000 microM) induced a low activity mode and revealed isolated long shut intervals. Neither of these phenomena were due to the Ba2+ that typically contaminates reagent grade salts. 3. The low activity mode was characterized by typically single brief open intervals with mean durations of 0.1 ms, separated by long shut intervals with mean durations of 100 ms. The very low open probability of about 0.001 during the low activity mode would make a sojourn to this mode functionally equivalent to a sojourn to an inactive state. The durations of sojourns in the low activity mode were exponentially distributed, with the mean durations ranging from about 1 s in 10 microM Ca(i)2+, to 4.5 s in 1000 microM Ca(i)2+. With increased filtering, the brief open intervals would escape detection so that a sojourn to the low activity mode would appear as a single shut interval. A typical channel spent less than 5{\%} of its time in the low activity mode for [Ca2+]i < 10 microM. This increased to about 30{\%} for [Ca2+]i > 100-1000 microM. A kinetic model with three closed states and two open states could approximate the gating of the low activity mode. 4. The isolated long shut intervals were not from the low activity mode, suggesting a different underlying mechanism. Their frequency of occurrence of about 0.3 s-1 did not increase with increasing [Ca2+]i, indicating that they did not arise from a slow Ca2+ block. Their durations were exponentially distributed, with a mean of 127 ms, which was independent of [Ca2+]i, suggesting that a single Ca(2+)-independent closed state or block underlies the isolated long shut intervals. At higher [Ca2+]i, up to 60{\%} of the shut time could be spent in the isolated long shut intervals. 5. These observations suggest that activation of BK channels by high [Ca2+]i can be limited by sojourns to a low activity mode and also by isolated long shut intervals, two additional phenomena that will have to be accounted for in the gating of BK channels.",
author = "Rothberg, {B. S.} and Bello, {R. A.} and L. Song and Magleby, {K. L.}",
year = "1996",
month = "6",
day = "15",
language = "English",
volume = "493",
journal = "Journal of Physiology",
issn = "0022-3751",
publisher = "Wiley-Blackwell",

}

TY - JOUR

T1 - High Ca2+ concentrations induce a low activity mode and reveal Ca2(+)-independent long shut intervals in BK channels from rat muscle.

AU - Rothberg, B. S.

AU - Bello, R. A.

AU - Song, L.

AU - Magleby, K. L.

PY - 1996/6/15

Y1 - 1996/6/15

N2 - 1. Large-conductance calcium-activated K+ channels (BK channels) often display long closed intervals at higher levels of Ca2+. To gain further insight into possible mechanisms for these intervals, currents were recorded from single BK channels, using the patch clamp technique, from patches of membrane excised from primary cultures of rat skeletal muscle. 2. High intracellular calcium concentrations ([Ca2+]i; 10-1000 microM) induced a low activity mode and revealed isolated long shut intervals. Neither of these phenomena were due to the Ba2+ that typically contaminates reagent grade salts. 3. The low activity mode was characterized by typically single brief open intervals with mean durations of 0.1 ms, separated by long shut intervals with mean durations of 100 ms. The very low open probability of about 0.001 during the low activity mode would make a sojourn to this mode functionally equivalent to a sojourn to an inactive state. The durations of sojourns in the low activity mode were exponentially distributed, with the mean durations ranging from about 1 s in 10 microM Ca(i)2+, to 4.5 s in 1000 microM Ca(i)2+. With increased filtering, the brief open intervals would escape detection so that a sojourn to the low activity mode would appear as a single shut interval. A typical channel spent less than 5% of its time in the low activity mode for [Ca2+]i < 10 microM. This increased to about 30% for [Ca2+]i > 100-1000 microM. A kinetic model with three closed states and two open states could approximate the gating of the low activity mode. 4. The isolated long shut intervals were not from the low activity mode, suggesting a different underlying mechanism. Their frequency of occurrence of about 0.3 s-1 did not increase with increasing [Ca2+]i, indicating that they did not arise from a slow Ca2+ block. Their durations were exponentially distributed, with a mean of 127 ms, which was independent of [Ca2+]i, suggesting that a single Ca(2+)-independent closed state or block underlies the isolated long shut intervals. At higher [Ca2+]i, up to 60% of the shut time could be spent in the isolated long shut intervals. 5. These observations suggest that activation of BK channels by high [Ca2+]i can be limited by sojourns to a low activity mode and also by isolated long shut intervals, two additional phenomena that will have to be accounted for in the gating of BK channels.

AB - 1. Large-conductance calcium-activated K+ channels (BK channels) often display long closed intervals at higher levels of Ca2+. To gain further insight into possible mechanisms for these intervals, currents were recorded from single BK channels, using the patch clamp technique, from patches of membrane excised from primary cultures of rat skeletal muscle. 2. High intracellular calcium concentrations ([Ca2+]i; 10-1000 microM) induced a low activity mode and revealed isolated long shut intervals. Neither of these phenomena were due to the Ba2+ that typically contaminates reagent grade salts. 3. The low activity mode was characterized by typically single brief open intervals with mean durations of 0.1 ms, separated by long shut intervals with mean durations of 100 ms. The very low open probability of about 0.001 during the low activity mode would make a sojourn to this mode functionally equivalent to a sojourn to an inactive state. The durations of sojourns in the low activity mode were exponentially distributed, with the mean durations ranging from about 1 s in 10 microM Ca(i)2+, to 4.5 s in 1000 microM Ca(i)2+. With increased filtering, the brief open intervals would escape detection so that a sojourn to the low activity mode would appear as a single shut interval. A typical channel spent less than 5% of its time in the low activity mode for [Ca2+]i < 10 microM. This increased to about 30% for [Ca2+]i > 100-1000 microM. A kinetic model with three closed states and two open states could approximate the gating of the low activity mode. 4. The isolated long shut intervals were not from the low activity mode, suggesting a different underlying mechanism. Their frequency of occurrence of about 0.3 s-1 did not increase with increasing [Ca2+]i, indicating that they did not arise from a slow Ca2+ block. Their durations were exponentially distributed, with a mean of 127 ms, which was independent of [Ca2+]i, suggesting that a single Ca(2+)-independent closed state or block underlies the isolated long shut intervals. At higher [Ca2+]i, up to 60% of the shut time could be spent in the isolated long shut intervals. 5. These observations suggest that activation of BK channels by high [Ca2+]i can be limited by sojourns to a low activity mode and also by isolated long shut intervals, two additional phenomena that will have to be accounted for in the gating of BK channels.

UR - http://www.scopus.com/inward/record.url?scp=0030585442&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030585442&partnerID=8YFLogxK

M3 - Article

VL - 493

JO - Journal of Physiology

JF - Journal of Physiology

SN - 0022-3751

ER -