Hepatocyte growth factor (HGF) and 1,25-dihydroxyvitamin D together stimulate human bone marrow-derived stem cells toward the osteogenic phenotype by HGF-induced up-regulation of VDR

Ketian Chen, Kristina K. Aenlle, Kevin M. Curtis, Bernard A. Roos, Guy Howard

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Bone formation and remodeling require generation of osteoprogenitors from bone marrow stem cells (MSC), which are regulated by growth factors and hormones, with putative roles in mesenchymal cell differentiation. Hepatocyte growth factor (HGF) is a pleiotropic growth factor, and together with its high affinity receptor cMet are widely expressed in normal tissues. 1,25-dihydroxyvitamin D (1,25OHD) is the most active metabolite of vitamin D; produced mainly in the kidney, but also by osteoblasts. We previously reported that HGF and 1,25OHD act together to increase osteogenic differentiation of human MSC (hMSC) potentially through increasing p53. Although p53 does not induce the vitamin D receptor (VDR), p63, a member of the p53 family of transcription factors has been reported to up-regulate VDR expression in some tumor cell lines, and thus might play a part in HGF-regulated VDR expression. Our hypothesis is that the combination of HGF and 1,25OHD can induce hMSC differentiation by up-regulation of 1,25OHD and/or VDR expression to increase cell response(s) to 1,25OHD. Using real-time RT-qPCR, Western blots, luciferase reporter assays, and siRNAs, as well as antibodies to specific signaling molecules we showed that HGF induced VDR gene expression, as well as up-regulated p63 gene expression. p63 gene knockdown by siRNA eliminated the effects of HGF on VDR gene expression as measured by RT-qPCR, Western blots and luciferase reporter assay, and downstream on osteogenic differentiation markers, including alkaline phosphatase staining. Differentiation is a coordinated process of cell cycle exit and tissue-specific gene expression. These results suggest HGF might be a good candidate to coordinate the regulation of these two processes during hMSC osteogenic differentiation. p63 could be a key connecting molecule on the pathway of HGF-induced VDR expression. Understanding the role of these factors and their actions could have important clinical implications for the use of hMSC in the development of novel stem cell therapies.

Original languageEnglish
Pages (from-to)69-77
Number of pages9
JournalBone
Volume51
Issue number1
DOIs
StatePublished - Jul 1 2012

Fingerprint

Calcitriol Receptors
Hepatocyte Growth Factor
Up-Regulation
Stem Cells
Bone Marrow
Phenotype
Gene Expression
Luciferases
Intercellular Signaling Peptides and Proteins
Western Blotting
Gene Knockdown Techniques
1,25-dihydroxyvitamin D
Bone Remodeling
Differentiation Antigens
Cell- and Tissue-Based Therapy
Tumor Cell Line
Osteoblasts
Osteogenesis
Vitamin D
Bone Marrow Cells

Keywords

  • 1,25-dihydroxyvitamin d
  • Hepatocyte growth factor
  • Mesenchymal stem cell
  • Osteoprogenitors
  • P63
  • Stem cell

ASJC Scopus subject areas

  • Physiology
  • Endocrinology, Diabetes and Metabolism
  • Histology

Cite this

Hepatocyte growth factor (HGF) and 1,25-dihydroxyvitamin D together stimulate human bone marrow-derived stem cells toward the osteogenic phenotype by HGF-induced up-regulation of VDR. / Chen, Ketian; Aenlle, Kristina K.; Curtis, Kevin M.; Roos, Bernard A.; Howard, Guy.

In: Bone, Vol. 51, No. 1, 01.07.2012, p. 69-77.

Research output: Contribution to journalArticle

@article{ea34bc11313a4de1b18f5e9de7cb2d10,
title = "Hepatocyte growth factor (HGF) and 1,25-dihydroxyvitamin D together stimulate human bone marrow-derived stem cells toward the osteogenic phenotype by HGF-induced up-regulation of VDR",
abstract = "Bone formation and remodeling require generation of osteoprogenitors from bone marrow stem cells (MSC), which are regulated by growth factors and hormones, with putative roles in mesenchymal cell differentiation. Hepatocyte growth factor (HGF) is a pleiotropic growth factor, and together with its high affinity receptor cMet are widely expressed in normal tissues. 1,25-dihydroxyvitamin D (1,25OHD) is the most active metabolite of vitamin D; produced mainly in the kidney, but also by osteoblasts. We previously reported that HGF and 1,25OHD act together to increase osteogenic differentiation of human MSC (hMSC) potentially through increasing p53. Although p53 does not induce the vitamin D receptor (VDR), p63, a member of the p53 family of transcription factors has been reported to up-regulate VDR expression in some tumor cell lines, and thus might play a part in HGF-regulated VDR expression. Our hypothesis is that the combination of HGF and 1,25OHD can induce hMSC differentiation by up-regulation of 1,25OHD and/or VDR expression to increase cell response(s) to 1,25OHD. Using real-time RT-qPCR, Western blots, luciferase reporter assays, and siRNAs, as well as antibodies to specific signaling molecules we showed that HGF induced VDR gene expression, as well as up-regulated p63 gene expression. p63 gene knockdown by siRNA eliminated the effects of HGF on VDR gene expression as measured by RT-qPCR, Western blots and luciferase reporter assay, and downstream on osteogenic differentiation markers, including alkaline phosphatase staining. Differentiation is a coordinated process of cell cycle exit and tissue-specific gene expression. These results suggest HGF might be a good candidate to coordinate the regulation of these two processes during hMSC osteogenic differentiation. p63 could be a key connecting molecule on the pathway of HGF-induced VDR expression. Understanding the role of these factors and their actions could have important clinical implications for the use of hMSC in the development of novel stem cell therapies.",
keywords = "1,25-dihydroxyvitamin d, Hepatocyte growth factor, Mesenchymal stem cell, Osteoprogenitors, P63, Stem cell",
author = "Ketian Chen and Aenlle, {Kristina K.} and Curtis, {Kevin M.} and Roos, {Bernard A.} and Guy Howard",
year = "2012",
month = "7",
day = "1",
doi = "10.1016/j.bone.2012.04.002",
language = "English",
volume = "51",
pages = "69--77",
journal = "Bone",
issn = "8756-3282",
publisher = "Elsevier Inc.",
number = "1",

}

TY - JOUR

T1 - Hepatocyte growth factor (HGF) and 1,25-dihydroxyvitamin D together stimulate human bone marrow-derived stem cells toward the osteogenic phenotype by HGF-induced up-regulation of VDR

AU - Chen, Ketian

AU - Aenlle, Kristina K.

AU - Curtis, Kevin M.

AU - Roos, Bernard A.

AU - Howard, Guy

PY - 2012/7/1

Y1 - 2012/7/1

N2 - Bone formation and remodeling require generation of osteoprogenitors from bone marrow stem cells (MSC), which are regulated by growth factors and hormones, with putative roles in mesenchymal cell differentiation. Hepatocyte growth factor (HGF) is a pleiotropic growth factor, and together with its high affinity receptor cMet are widely expressed in normal tissues. 1,25-dihydroxyvitamin D (1,25OHD) is the most active metabolite of vitamin D; produced mainly in the kidney, but also by osteoblasts. We previously reported that HGF and 1,25OHD act together to increase osteogenic differentiation of human MSC (hMSC) potentially through increasing p53. Although p53 does not induce the vitamin D receptor (VDR), p63, a member of the p53 family of transcription factors has been reported to up-regulate VDR expression in some tumor cell lines, and thus might play a part in HGF-regulated VDR expression. Our hypothesis is that the combination of HGF and 1,25OHD can induce hMSC differentiation by up-regulation of 1,25OHD and/or VDR expression to increase cell response(s) to 1,25OHD. Using real-time RT-qPCR, Western blots, luciferase reporter assays, and siRNAs, as well as antibodies to specific signaling molecules we showed that HGF induced VDR gene expression, as well as up-regulated p63 gene expression. p63 gene knockdown by siRNA eliminated the effects of HGF on VDR gene expression as measured by RT-qPCR, Western blots and luciferase reporter assay, and downstream on osteogenic differentiation markers, including alkaline phosphatase staining. Differentiation is a coordinated process of cell cycle exit and tissue-specific gene expression. These results suggest HGF might be a good candidate to coordinate the regulation of these two processes during hMSC osteogenic differentiation. p63 could be a key connecting molecule on the pathway of HGF-induced VDR expression. Understanding the role of these factors and their actions could have important clinical implications for the use of hMSC in the development of novel stem cell therapies.

AB - Bone formation and remodeling require generation of osteoprogenitors from bone marrow stem cells (MSC), which are regulated by growth factors and hormones, with putative roles in mesenchymal cell differentiation. Hepatocyte growth factor (HGF) is a pleiotropic growth factor, and together with its high affinity receptor cMet are widely expressed in normal tissues. 1,25-dihydroxyvitamin D (1,25OHD) is the most active metabolite of vitamin D; produced mainly in the kidney, but also by osteoblasts. We previously reported that HGF and 1,25OHD act together to increase osteogenic differentiation of human MSC (hMSC) potentially through increasing p53. Although p53 does not induce the vitamin D receptor (VDR), p63, a member of the p53 family of transcription factors has been reported to up-regulate VDR expression in some tumor cell lines, and thus might play a part in HGF-regulated VDR expression. Our hypothesis is that the combination of HGF and 1,25OHD can induce hMSC differentiation by up-regulation of 1,25OHD and/or VDR expression to increase cell response(s) to 1,25OHD. Using real-time RT-qPCR, Western blots, luciferase reporter assays, and siRNAs, as well as antibodies to specific signaling molecules we showed that HGF induced VDR gene expression, as well as up-regulated p63 gene expression. p63 gene knockdown by siRNA eliminated the effects of HGF on VDR gene expression as measured by RT-qPCR, Western blots and luciferase reporter assay, and downstream on osteogenic differentiation markers, including alkaline phosphatase staining. Differentiation is a coordinated process of cell cycle exit and tissue-specific gene expression. These results suggest HGF might be a good candidate to coordinate the regulation of these two processes during hMSC osteogenic differentiation. p63 could be a key connecting molecule on the pathway of HGF-induced VDR expression. Understanding the role of these factors and their actions could have important clinical implications for the use of hMSC in the development of novel stem cell therapies.

KW - 1,25-dihydroxyvitamin d

KW - Hepatocyte growth factor

KW - Mesenchymal stem cell

KW - Osteoprogenitors

KW - P63

KW - Stem cell

UR - http://www.scopus.com/inward/record.url?scp=84860300959&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84860300959&partnerID=8YFLogxK

U2 - 10.1016/j.bone.2012.04.002

DO - 10.1016/j.bone.2012.04.002

M3 - Article

C2 - 22521434

AN - SCOPUS:84860300959

VL - 51

SP - 69

EP - 77

JO - Bone

JF - Bone

SN - 8756-3282

IS - 1

ER -