Growth of a bacterium that apparently uses arsenic instead of phosphorus is a consequence of massive ribosome breakdown

Georgeta N. Basturea, Thomas K. Harris, Murray P. Deutscher

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Arecent study (Wolfe-Simon, F., Switzer Blum, J., Kulp, T. R., Gordon, G. W., Hoeft, S. E., Pett-Ridge, J., Stolz, J. F., Webb, S. M., Weber, P. K., Davies, P. C., Anbar, A. D., and Oremland, R. S. (2011) Science 332, 1163-1166) described the isolation of a special bacterial strain, GFAJ-1, that could grow in medium containing arsenate, but lacking phosphate, and that supposedly could substitute arsenic for phosphorus in its biological macromolecules. Here, we provide an alternative explanation for these observations and show that they can be reproduced in a laboratory strain of Escherichia coli. We find that arsenate induces massive ribosome degradation, which provides a source of phosphate. Asmall number of arsenate-tolerant cells arise during the long lag period prior to initiation of growth in +As/-P medium, and it is this population that undergoes the very slow, limited growth observed for both E. coli and GFAJ-1. These results provide a simple explanation for the reported growth of GFAJ-1 in arsenate without invoking replacement of phosphorus by arsenic in biological macromolecules.

Original languageEnglish (US)
Pages (from-to)28816-28819
Number of pages4
JournalJournal of Biological Chemistry
Volume287
Issue number34
DOIs
StatePublished - Aug 17 2012

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Growth of a bacterium that apparently uses arsenic instead of phosphorus is a consequence of massive ribosome breakdown'. Together they form a unique fingerprint.

Cite this