TY - JOUR
T1 - Graph-based processing of macromolecular information
AU - Munteanu, Cristian R.
AU - Aguiar-Pulido, Vanessa
AU - Freire, Ana
AU - Martínez-Romero, Marcos
AU - Porto-Pazos, Ana B.
AU - Pereira, Javier
AU - Dorado, Julian
N1 - Publisher Copyright:
© 2015 Bentham Science Publishers.
PY - 2015/12/1
Y1 - 2015/12/1
N2 - The complex information encoded into the element connectivity of a system gives rise to the possibility of graphical processing of divisible systems by using the Graph theory. An application in this sense is the quantitative characterization of molecule topologies of drugs, proteins and nucleic acids, in order to build mathematical models as Quantitative Structure - Activity Relationships between the molecules and a specific biological activity. These types of models can predict new drugs, molecular targets and molecular properties of new molecular structures with an important impact on the Drug Discovery, Medicinal Chemistry, Molecular Diagnosis, and Treatment. The current review is focused on the mathematical methods to encode the connectivity information in three types of graphs such as star graphs, spiral graphs and contact networks and three in-house scientific applications dedicated to the calculation of molecular graph topological indices such as S2SNet, CULSPIN and MInD-Prot. In addition, some examples are presented, such as results of this methodology on drugs, proteins and nucleic acids, including the Web implementation of the best molecular prediction models based on graphs.
AB - The complex information encoded into the element connectivity of a system gives rise to the possibility of graphical processing of divisible systems by using the Graph theory. An application in this sense is the quantitative characterization of molecule topologies of drugs, proteins and nucleic acids, in order to build mathematical models as Quantitative Structure - Activity Relationships between the molecules and a specific biological activity. These types of models can predict new drugs, molecular targets and molecular properties of new molecular structures with an important impact on the Drug Discovery, Medicinal Chemistry, Molecular Diagnosis, and Treatment. The current review is focused on the mathematical methods to encode the connectivity information in three types of graphs such as star graphs, spiral graphs and contact networks and three in-house scientific applications dedicated to the calculation of molecular graph topological indices such as S2SNet, CULSPIN and MInD-Prot. In addition, some examples are presented, such as results of this methodology on drugs, proteins and nucleic acids, including the Web implementation of the best molecular prediction models based on graphs.
KW - Complex networks
KW - Graphs
KW - Markov descriptors
KW - Molecular information
KW - Protein topological indices
KW - QSAR
UR - http://www.scopus.com/inward/record.url?scp=84959562437&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84959562437&partnerID=8YFLogxK
U2 - 10.2174/1574893610666151008012438
DO - 10.2174/1574893610666151008012438
M3 - Article
AN - SCOPUS:84959562437
VL - 10
SP - 606
EP - 631
JO - Current Bioinformatics
JF - Current Bioinformatics
SN - 1574-8936
IS - 5
ER -