Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds

Yijen A. Huang, Jeff Grant, Stephen Roper

Research output: Contribution to journalArticle

16 Scopus citations

Abstract

Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III) taste bud cells (~50%) respond to 100 μM glutamate, NMDA, or kainic acid (KA) with an increase in intracellular Ca 2+. In contrast, Receptor (Type II) taste cells rarely (4%) responded to 100 μM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami) receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.

Original languageEnglish (US)
Article numbere30662
JournalPloS one
Volume7
Issue number1
DOIs
StatePublished - Jan 26 2012

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint Dive into the research topics of 'Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds'. Together they form a unique fingerprint.

  • Cite this