Genotypic identification of Fusarium species from ocular sources: comparison to morphologic classification and antifungal sensitivity testing (an AOS thesis)

Research output: Contribution to journalArticle

12 Scopus citations


Purpose: Ocular infections caused by fungal organisms can cause significant ocular morbidity, particularly when diagnosis and treatment are delayed. Rapid and accurate identification of Fusarium species at the subgenus level using current diagnostic standards is timely and insensitive. The purpose of this study is to examine the usefulness of polymerase chain reaction (PCR) analysis of the internal transcribed spacer (ITS) regions (ITS1, 5.8S, and ITS2) in detecting and differentiating Fusarium species from isolates of ocular infections, and to assess the correlation between the genotypic and morphologic classification. Methods: Fifty-eight isolates from 52 patients diagnosed with Fusarium ocular infections were retrieved from storage at the Bascom Palmer Eye Institute's ocular microbiology laboratory. Morphologic classification was determined at both a general and a reference microbiology laboratory. DNA was extracted and purified, and the ITS region was amplified and sequenced. Following DNA sequences, alignment and phylogenetic analysis were done. Susceptibility to antifungal drugs was measured according to the Clinical and Laboratory Standards Institute reference method. Results: Sequence analysis demonstrated 15 unique sequences among the 58 isolates. The grouping showed that the 58 isolates were distributed among 4 main species complexes. At the species level, morphologic classification correlated with genotypic classification in 25% and 97% of the isolates in a general microbiology and a reference mycology laboratory, respectively. Conclusions: The sequence variation within the ITS provides a sufficient quantitative basis for the development of a molecular diagnostic approach to the Fusarium pathogens isolated from ocular infections. Morphology based on microscopic and macroscopic observations yields inconsistent results, particularly at nonreference laboratories, emphasizing the need for a more reproducible test with less user-dependent variability. Fusarium solani tends to be more resistant to certain antifungals (azoles).

Original languageEnglish (US)
Pages (from-to)227-239
Number of pages13
JournalTransactions of the American Ophthalmological Society
StatePublished - Dec 1 2008


ASJC Scopus subject areas

  • Ophthalmology

Cite this