Genome structure of Abelson murine leukemia virus variants: Proviruses in fibroblasts and lymphoid cells

S. P. Goff, O. N. Witte, E. Gilboa, N. Rosenberg, D. Baltimore

Research output: Contribution to journalArticle

28 Scopus citations

Abstract

We have prepared full-length DNA clones of the Abelson murine leukemia virus (A-MuLV) genome. A specific probe homologous to the central portion of the A-MuLV genome was prepared by nick translation of a subcloned restriction fraction from the cloned DNA. The probe was used to examine the genome structure of several A-MuLV variants. The conclusions are: (i) three viruses coding for Abelson-specific proteins of molecular weight 120,000, 100,000, and 90,000 had genomes indistinguishable in size, suggesting that the shorter proteins are the result of early translational termination; (ii) compared with the genome encoding the 120,000-dalton (120K) protein, a genome coding for a 160K protein was 0.8 kilobase larger in the A-MuLV-specific region; and (iii) a genome coding for a 92K protein had a 700-base pair deletion internal to the coding region. This mutant was transformation defective: its 92K protein lacked the protein kinase activity normally associated with the A-MuLV protein, and cells containing the virus were not morphologically transformed. In addition, we determined the number of A-MuLV proviruses in each of several transformed fibroblast and lymphoid cells prepared by infection in vitro. These experiments show that a single copy of the A-MuLV provirus is sufficient to transform both types of cells and that nonproducer cells generally have only one integrated provirus.

Original languageEnglish (US)
Pages (from-to)460-468
Number of pages9
JournalUnknown Journal
Volume38
Issue number2
DOIs
StatePublished - 1981

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint Dive into the research topics of 'Genome structure of Abelson murine leukemia virus variants: Proviruses in fibroblasts and lymphoid cells'. Together they form a unique fingerprint.

Cite this