Gene expression after freshwater transfer in gills and opercular epithelia of killifish: Insight into divergent mechanisms of ion transport

Graham R. Scott, James B. Claiborne, Susan L. Edwards, Patricia M. Schulte, Chris M. Wood

Research output: Contribution to journalArticlepeer-review

110 Scopus citations


We have explored the molecular basis for differences in physiological function between the gills and opercular epithelium of the euryhaline killifish Fundulus heteroclitus. These tissues are functionally similar in seawater, but in freshwater the gills actively absorb Na+ but not Cl-, whereas the opercular epithelium actively absorbs Cl- but not Na +. These differences in freshwater physiology are likely due to differences in absolute levels of gene expression (measured using real-time PCR), as several proteins important for Na+ transport, namely Na +,H+-exchanger 2 (NHE2), carbonic anhydrase 2 (CA2), Na+,HCO3-cotransporter 1, and V-type H +-ATPase, were expressed at 3- to over 30-fold higher absolute levels in the gills. In gills, transfer from 10% seawater to freshwater increased the activity of Na+,K+-ATPase by twofold (from 12 h to 7 days), increased the expression of NHE2 (at 12 h) and CA2 (from 12 h to 7 days), and decreased the expression of NHE3 (from 12 h to 3 days). In opercular epithelium, NHE2 was not expressed; furthermore, Na+,K +-ATPase activity was unchanged after transfer to freshwater, CA2 mRNA levels decreased, and NHE3 levels increased. Consistent with their functional similarities in seawater, killifish gills and opercular epithelium expressed Na+,K+-ATPase α1a, Na +,K+,2Cl-cotransporter 1 (NKCC1), cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel and the signalling protein 14-3-3a at similar absolute levels. Furthermore, NKCC1 and CFTR were suppressed equally in each tissue after freshwater transfer, and 14-3-3a mRNA increased in both. These results provide insight into the mechanisms of ion transport by killifish gills and opercular epithelia, and demonstrate a potential molecular basis for the differences in physiological function between these two organs.

Original languageEnglish (US)
Pages (from-to)2719-2729
Number of pages11
JournalJournal of Experimental Biology
Issue number14
StatePublished - Jul 2005
Externally publishedYes


  • Carbonic anhydrase
  • Fish
  • Fundulus heteroclitus
  • Na,H -exchanger
  • Na,HCOcotransporter

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Agricultural and Biological Sciences (miscellaneous)


Dive into the research topics of 'Gene expression after freshwater transfer in gills and opercular epithelia of killifish: Insight into divergent mechanisms of ion transport'. Together they form a unique fingerprint.

Cite this