GEE analysis of clustered binary data with diverging number of covariates

Research output: Contribution to journalArticlepeer-review

56 Scopus citations


Clustered binary data with a large number of covariates have become increasingly common in many scientific disciplines. This paper develops an asymptotic theory for generalized estimating equations (GEE) analysis of clustered binary data when the number of covariates grows to infinity with the number of clusters. In this "large n, diverging p" framework, we provide appropriate regularity conditions and establish the existence, consistency and asymptotic normality of the GEE estimator. Furthermore, we prove that the sandwich variance formula remains valid. Even when the working correlation matrix is misspecified, the use of the sandwich variance formula leads to an asymptotically valid confidence interval and Wald test for an estimable linear combination of the unknown parameters. The accuracy of the asymptotic approximation is examined via numerical simulations. We also discuss the "diverging p" asymptotic theory for general GEE. The results in this paper extend the recent elegant work of Xie and Yang [Ann. Statist. 31 (2003) 310- 347] and Balan and Schiopu-Kratina [Ann. Statist. 32 (2005) 522-541] in the "fixed p" setting.

Original languageEnglish (US)
Pages (from-to)389-417
Number of pages29
JournalAnnals of Statistics
Issue number1
StatePublished - Feb 2011
Externally publishedYes


  • Clustered binary data
  • Generalized estimating equations (GEE)
  • Highdimensional covariates
  • Sandwich variance formula

ASJC Scopus subject areas

  • Statistics and Probability
  • Statistics, Probability and Uncertainty


Dive into the research topics of 'GEE analysis of clustered binary data with diverging number of covariates'. Together they form a unique fingerprint.

Cite this