Fundamental solutions for a coupled formulation of porous biphasic media with compressible solid and fluid phases

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Citations (Scopus)

Abstract

A general biphasic poroelastic formulation at finite strains with intrinsic compressibility of phases, whose governing equations are inferred on account of a leastaction variational principle, has been recently proposed (TMCPM). Hereby, a theoretical, analytical, and numerical assessment is presented on the capability of linearized TMCPM to recover, in the limit of vanishing porosity, a traditional single phase continuum model.

Original languageEnglish
Title of host publicationComputational Methods for Coupled Problems in Science and Engineering V - A Conference Celebrating the 60th Birthday of Eugenio Onate, COUPLED PROBLEMS 2013
PublisherInternational Center for Numerical Methods in Engineering
Pages1142-1153
Number of pages12
ISBN (Print)9788494140761
StatePublished - Jan 1 2013
Event5th International Conference on Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2013 - Santa Eulalia, Ibiza Island, Spain
Duration: Jun 17 2013Jun 19 2013

Other

Other5th International Conference on Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2013
CountrySpain
CitySanta Eulalia, Ibiza Island
Period6/17/136/19/13

Fingerprint

Fundamental Solution
Compressibility
Porous Media
Porous materials
Porosity
Fluid
Finite Strain
Fluids
Formulation
Continuum Model
Variational Principle
Governing equation

Keywords

  • Compressibility
  • Least action
  • Poroelasticity
  • Porous media
  • TMCPM

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Applied Mathematics

Cite this

Serpieri, R., Travascio, F., & Asfour, S. S. (2013). Fundamental solutions for a coupled formulation of porous biphasic media with compressible solid and fluid phases. In Computational Methods for Coupled Problems in Science and Engineering V - A Conference Celebrating the 60th Birthday of Eugenio Onate, COUPLED PROBLEMS 2013 (pp. 1142-1153). International Center for Numerical Methods in Engineering.

Fundamental solutions for a coupled formulation of porous biphasic media with compressible solid and fluid phases. / Serpieri, R.; Travascio, Francesco; Asfour, Shihab S.

Computational Methods for Coupled Problems in Science and Engineering V - A Conference Celebrating the 60th Birthday of Eugenio Onate, COUPLED PROBLEMS 2013. International Center for Numerical Methods in Engineering, 2013. p. 1142-1153.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Serpieri, R, Travascio, F & Asfour, SS 2013, Fundamental solutions for a coupled formulation of porous biphasic media with compressible solid and fluid phases. in Computational Methods for Coupled Problems in Science and Engineering V - A Conference Celebrating the 60th Birthday of Eugenio Onate, COUPLED PROBLEMS 2013. International Center for Numerical Methods in Engineering, pp. 1142-1153, 5th International Conference on Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2013, Santa Eulalia, Ibiza Island, Spain, 6/17/13.
Serpieri R, Travascio F, Asfour SS. Fundamental solutions for a coupled formulation of porous biphasic media with compressible solid and fluid phases. In Computational Methods for Coupled Problems in Science and Engineering V - A Conference Celebrating the 60th Birthday of Eugenio Onate, COUPLED PROBLEMS 2013. International Center for Numerical Methods in Engineering. 2013. p. 1142-1153
Serpieri, R. ; Travascio, Francesco ; Asfour, Shihab S. / Fundamental solutions for a coupled formulation of porous biphasic media with compressible solid and fluid phases. Computational Methods for Coupled Problems in Science and Engineering V - A Conference Celebrating the 60th Birthday of Eugenio Onate, COUPLED PROBLEMS 2013. International Center for Numerical Methods in Engineering, 2013. pp. 1142-1153
@inproceedings{22518dac78e44cc182e011e33bf10543,
title = "Fundamental solutions for a coupled formulation of porous biphasic media with compressible solid and fluid phases",
abstract = "A general biphasic poroelastic formulation at finite strains with intrinsic compressibility of phases, whose governing equations are inferred on account of a leastaction variational principle, has been recently proposed (TMCPM). Hereby, a theoretical, analytical, and numerical assessment is presented on the capability of linearized TMCPM to recover, in the limit of vanishing porosity, a traditional single phase continuum model.",
keywords = "Compressibility, Least action, Poroelasticity, Porous media, TMCPM",
author = "R. Serpieri and Francesco Travascio and Asfour, {Shihab S}",
year = "2013",
month = "1",
day = "1",
language = "English",
isbn = "9788494140761",
pages = "1142--1153",
booktitle = "Computational Methods for Coupled Problems in Science and Engineering V - A Conference Celebrating the 60th Birthday of Eugenio Onate, COUPLED PROBLEMS 2013",
publisher = "International Center for Numerical Methods in Engineering",

}

TY - GEN

T1 - Fundamental solutions for a coupled formulation of porous biphasic media with compressible solid and fluid phases

AU - Serpieri, R.

AU - Travascio, Francesco

AU - Asfour, Shihab S

PY - 2013/1/1

Y1 - 2013/1/1

N2 - A general biphasic poroelastic formulation at finite strains with intrinsic compressibility of phases, whose governing equations are inferred on account of a leastaction variational principle, has been recently proposed (TMCPM). Hereby, a theoretical, analytical, and numerical assessment is presented on the capability of linearized TMCPM to recover, in the limit of vanishing porosity, a traditional single phase continuum model.

AB - A general biphasic poroelastic formulation at finite strains with intrinsic compressibility of phases, whose governing equations are inferred on account of a leastaction variational principle, has been recently proposed (TMCPM). Hereby, a theoretical, analytical, and numerical assessment is presented on the capability of linearized TMCPM to recover, in the limit of vanishing porosity, a traditional single phase continuum model.

KW - Compressibility

KW - Least action

KW - Poroelasticity

KW - Porous media

KW - TMCPM

UR - http://www.scopus.com/inward/record.url?scp=84906871916&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84906871916&partnerID=8YFLogxK

M3 - Conference contribution

SN - 9788494140761

SP - 1142

EP - 1153

BT - Computational Methods for Coupled Problems in Science and Engineering V - A Conference Celebrating the 60th Birthday of Eugenio Onate, COUPLED PROBLEMS 2013

PB - International Center for Numerical Methods in Engineering

ER -