Fractional-spin integrals of motion for the boundary sine-gordon model at the free fermion point

Research output: Contribution to journalArticle

49 Citations (Scopus)

Abstract

We construct integrals of motion (IM) for the sine-Gordon model with boundary at the free fermion point (β2 = 4π) which correctly determine the boundary S matrix. The algebra of these IM ("boundary quantum group" at q = 1) is a one-parameter family of infinite-dimensional subalgebras of twisted sl(2). We also propose the structure of the fractional-spin IM away from the free fermion point (β2 ≠ 4π).

Original languageEnglish (US)
Pages (from-to)2747-2764
Number of pages18
JournalInternational Journal of Modern Physics A
Volume13
Issue number16
StatePublished - 1998

Fingerprint

Integrals of Motion
Fermions
Fractional
fermions
Quantum Groups
Subalgebra
algebra
Model
Algebra
matrices

ASJC Scopus subject areas

  • Mathematical Physics
  • Physics and Astronomy(all)
  • Nuclear and High Energy Physics

Cite this

@article{a2c42d2ee81643dfae483e468e841d97,
title = "Fractional-spin integrals of motion for the boundary sine-gordon model at the free fermion point",
abstract = "We construct integrals of motion (IM) for the sine-Gordon model with boundary at the free fermion point (β2 = 4π) which correctly determine the boundary S matrix. The algebra of these IM ({"}boundary quantum group{"} at q = 1) is a one-parameter family of infinite-dimensional subalgebras of twisted sl(2). We also propose the structure of the fractional-spin IM away from the free fermion point (β2 ≠ 4π).",
author = "Alexandru Mezincescu",
year = "1998",
language = "English (US)",
volume = "13",
pages = "2747--2764",
journal = "International Journal of Modern Physics A",
issn = "0217-751X",
publisher = "World Scientific Publishing Co. Pte Ltd",
number = "16",

}

TY - JOUR

T1 - Fractional-spin integrals of motion for the boundary sine-gordon model at the free fermion point

AU - Mezincescu, Alexandru

PY - 1998

Y1 - 1998

N2 - We construct integrals of motion (IM) for the sine-Gordon model with boundary at the free fermion point (β2 = 4π) which correctly determine the boundary S matrix. The algebra of these IM ("boundary quantum group" at q = 1) is a one-parameter family of infinite-dimensional subalgebras of twisted sl(2). We also propose the structure of the fractional-spin IM away from the free fermion point (β2 ≠ 4π).

AB - We construct integrals of motion (IM) for the sine-Gordon model with boundary at the free fermion point (β2 = 4π) which correctly determine the boundary S matrix. The algebra of these IM ("boundary quantum group" at q = 1) is a one-parameter family of infinite-dimensional subalgebras of twisted sl(2). We also propose the structure of the fractional-spin IM away from the free fermion point (β2 ≠ 4π).

UR - http://www.scopus.com/inward/record.url?scp=0000413470&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000413470&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0000413470

VL - 13

SP - 2747

EP - 2764

JO - International Journal of Modern Physics A

JF - International Journal of Modern Physics A

SN - 0217-751X

IS - 16

ER -