Force spectroscopy of the leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction

Xiaohui Zhang, Ewa Wojcikiewicz, Vincent T. Moy

Research output: Contribution to journalArticle

220 Citations (Scopus)

Abstract

Interactions between leukocyte function-associated antigen-1 (LFA-1) with its cognate ligand, intercellular adhesion molecule-1 (ICAM-1) play a crucial role in leukocyte adhesion. Because the cell and its adhesive components are subject to external perturbation from the surrounding flow of blood, it is important to understand the binding properties of the LFA-1/ICAM-1 interaction in both steady state and in the presence of an external pulling force. Here we report on atomic force microscopy (AFM) measurements of the unbinding of LFA-1 from ICAM-1. The single molecule measurements revealed the energy landscape corresponding to the dissociation of the LFA-1/ICAM-1 complex and provided the basis for defining the energetic determinants of the complex at equilibrium and under the influence of an external force. The AFM force measurements were performed in an experimental system consisting of an LFA-1-expressing T cell hybridoma, 3A9, attached to the end of the AFM cantilever and an apposing surface expressing ICAM-1. In measurements covering three orders of magnitude change in force loading rate, the LFA-1/ICAM-1 force spectrum (i.e., unbinding force versus loading rate) revealed a fast and a slow loading regime that characterized a steep inner activation barrier and a wide outer activation barrier, respectively. The addition of Mg2+, a cofactor that stabilizes the LFA-1/ICAM-1 interaction, elevated the unbinding force of the complex in the slow loading regime. In contrast, the presence of EDTA suppressed the inner barrier of the LFA-1/ICAM-1 complex. These results suggest that the equilibrium dissociation constant of the LFA-1/ICAM-1 interaction is regulated by the energetics of the outer activation barrier of the complex, while the ability of the complex to resist a pulling force is determined by the divalent cation-dependent inner activation barrier.

Original languageEnglish
Pages (from-to)2270-2279
Number of pages10
JournalBiophysical Journal
Volume83
Issue number4
StatePublished - Oct 1 2002

Fingerprint

Lymphocyte Function-Associated Antigen-1
Intercellular Adhesion Molecule-1
Spectrum Analysis
Atomic Force Microscopy
Divalent Cations
Hybridomas
Edetic Acid
Adhesives
Leukocytes
Ligands
T-Lymphocytes

ASJC Scopus subject areas

  • Biophysics

Cite this

Force spectroscopy of the leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction. / Zhang, Xiaohui; Wojcikiewicz, Ewa; Moy, Vincent T.

In: Biophysical Journal, Vol. 83, No. 4, 01.10.2002, p. 2270-2279.

Research output: Contribution to journalArticle

@article{a5f2f01922ee48a683c952e5c23a35fe,
title = "Force spectroscopy of the leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction",
abstract = "Interactions between leukocyte function-associated antigen-1 (LFA-1) with its cognate ligand, intercellular adhesion molecule-1 (ICAM-1) play a crucial role in leukocyte adhesion. Because the cell and its adhesive components are subject to external perturbation from the surrounding flow of blood, it is important to understand the binding properties of the LFA-1/ICAM-1 interaction in both steady state and in the presence of an external pulling force. Here we report on atomic force microscopy (AFM) measurements of the unbinding of LFA-1 from ICAM-1. The single molecule measurements revealed the energy landscape corresponding to the dissociation of the LFA-1/ICAM-1 complex and provided the basis for defining the energetic determinants of the complex at equilibrium and under the influence of an external force. The AFM force measurements were performed in an experimental system consisting of an LFA-1-expressing T cell hybridoma, 3A9, attached to the end of the AFM cantilever and an apposing surface expressing ICAM-1. In measurements covering three orders of magnitude change in force loading rate, the LFA-1/ICAM-1 force spectrum (i.e., unbinding force versus loading rate) revealed a fast and a slow loading regime that characterized a steep inner activation barrier and a wide outer activation barrier, respectively. The addition of Mg2+, a cofactor that stabilizes the LFA-1/ICAM-1 interaction, elevated the unbinding force of the complex in the slow loading regime. In contrast, the presence of EDTA suppressed the inner barrier of the LFA-1/ICAM-1 complex. These results suggest that the equilibrium dissociation constant of the LFA-1/ICAM-1 interaction is regulated by the energetics of the outer activation barrier of the complex, while the ability of the complex to resist a pulling force is determined by the divalent cation-dependent inner activation barrier.",
author = "Xiaohui Zhang and Ewa Wojcikiewicz and Moy, {Vincent T.}",
year = "2002",
month = "10",
day = "1",
language = "English",
volume = "83",
pages = "2270--2279",
journal = "Biophysical Journal",
issn = "0006-3495",
publisher = "Biophysical Society",
number = "4",

}

TY - JOUR

T1 - Force spectroscopy of the leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction

AU - Zhang, Xiaohui

AU - Wojcikiewicz, Ewa

AU - Moy, Vincent T.

PY - 2002/10/1

Y1 - 2002/10/1

N2 - Interactions between leukocyte function-associated antigen-1 (LFA-1) with its cognate ligand, intercellular adhesion molecule-1 (ICAM-1) play a crucial role in leukocyte adhesion. Because the cell and its adhesive components are subject to external perturbation from the surrounding flow of blood, it is important to understand the binding properties of the LFA-1/ICAM-1 interaction in both steady state and in the presence of an external pulling force. Here we report on atomic force microscopy (AFM) measurements of the unbinding of LFA-1 from ICAM-1. The single molecule measurements revealed the energy landscape corresponding to the dissociation of the LFA-1/ICAM-1 complex and provided the basis for defining the energetic determinants of the complex at equilibrium and under the influence of an external force. The AFM force measurements were performed in an experimental system consisting of an LFA-1-expressing T cell hybridoma, 3A9, attached to the end of the AFM cantilever and an apposing surface expressing ICAM-1. In measurements covering three orders of magnitude change in force loading rate, the LFA-1/ICAM-1 force spectrum (i.e., unbinding force versus loading rate) revealed a fast and a slow loading regime that characterized a steep inner activation barrier and a wide outer activation barrier, respectively. The addition of Mg2+, a cofactor that stabilizes the LFA-1/ICAM-1 interaction, elevated the unbinding force of the complex in the slow loading regime. In contrast, the presence of EDTA suppressed the inner barrier of the LFA-1/ICAM-1 complex. These results suggest that the equilibrium dissociation constant of the LFA-1/ICAM-1 interaction is regulated by the energetics of the outer activation barrier of the complex, while the ability of the complex to resist a pulling force is determined by the divalent cation-dependent inner activation barrier.

AB - Interactions between leukocyte function-associated antigen-1 (LFA-1) with its cognate ligand, intercellular adhesion molecule-1 (ICAM-1) play a crucial role in leukocyte adhesion. Because the cell and its adhesive components are subject to external perturbation from the surrounding flow of blood, it is important to understand the binding properties of the LFA-1/ICAM-1 interaction in both steady state and in the presence of an external pulling force. Here we report on atomic force microscopy (AFM) measurements of the unbinding of LFA-1 from ICAM-1. The single molecule measurements revealed the energy landscape corresponding to the dissociation of the LFA-1/ICAM-1 complex and provided the basis for defining the energetic determinants of the complex at equilibrium and under the influence of an external force. The AFM force measurements were performed in an experimental system consisting of an LFA-1-expressing T cell hybridoma, 3A9, attached to the end of the AFM cantilever and an apposing surface expressing ICAM-1. In measurements covering three orders of magnitude change in force loading rate, the LFA-1/ICAM-1 force spectrum (i.e., unbinding force versus loading rate) revealed a fast and a slow loading regime that characterized a steep inner activation barrier and a wide outer activation barrier, respectively. The addition of Mg2+, a cofactor that stabilizes the LFA-1/ICAM-1 interaction, elevated the unbinding force of the complex in the slow loading regime. In contrast, the presence of EDTA suppressed the inner barrier of the LFA-1/ICAM-1 complex. These results suggest that the equilibrium dissociation constant of the LFA-1/ICAM-1 interaction is regulated by the energetics of the outer activation barrier of the complex, while the ability of the complex to resist a pulling force is determined by the divalent cation-dependent inner activation barrier.

UR - http://www.scopus.com/inward/record.url?scp=0036789541&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036789541&partnerID=8YFLogxK

M3 - Article

C2 - 12324444

AN - SCOPUS:0036789541

VL - 83

SP - 2270

EP - 2279

JO - Biophysical Journal

JF - Biophysical Journal

SN - 0006-3495

IS - 4

ER -