Food selection, growth and physiology in relation to dietary sodium chloride content in rainbow trout (Oncorhynchus mykiss) under chronic waterborne Cu exposure

S. Niyogi, C. N. Kamunde, C. M. Wood

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

Waterborne Cu is toxic to Na+ and Cl- regulation in freshwater fish, and Cu is taken up, at least in part, via the Na+-transport pathway in the gills. Therefore, we hypothesized that freshwater fish may mitigate the toxic effects of waterborne Cu by selecting a NaCl-enriched diet over a normal diet. We tested this hypothesis in juvenile rainbow trout (Oncorhynchus mykiss) by offering them the choice between NaCl-enriched (1.9 mmol g-1 Na+) and normal (0.2 mmol g-1 Na+) diets under a chronic waterborne Cu exposure of 55 μg L-1 for a period of 28 days. Contrary to expectation, trout exhibited a preference for NaCl-enriched diet under control conditions, while exposure to chronic waterborne Cu severely disrupted their normal feeding pattern with an accompanying loss of preference for the NaCl-enriched diet. Waterborne Cu exposure also severely affected appetite and growth. Both appetite and growth gradually recovered with time, but remained significantly impaired relative to Cu-unexposed fish until the end of the exposure. Waterborne Cu exposure also significantly increased Cu accumulations in target organs (gill, liver, and gut), plasma and whole body. However, Cu accumulation decreased substantially towards the end of the exposure in target organs and whole body as well as in plasma in Cu-exposed fish with dietary choice relative to Cu-exposed fish with normal diet. These adjustments were concurrent with the gradual recovery of appetite, which also led to increased ingestion of the NaCl-enriched diet. Interestingly, this elevated dietary uptake of NaCl produced significant stimulation of Na+ efflux in Cu-exposed fish. Subsequently, it also led to significant elevation of Na+ levels in target organs and whole body, and restored the decrease of plasma Na+ and Cl- levels in Cu-exposed fish. The NaCl supplemented diet appeared to be beneficial in compensating Na+ and Cl- losses from the body induced by waterborne Cu. Overall, these results demonstrate that a NaCl-enriched diet, although consumed in relatively reduced quantities due to the impairment of food selection and appetite, can help to protect freshwater fish against chronic waterborne Cu toxicity.

Original languageEnglish
Pages (from-to)210-221
Number of pages12
JournalAquatic Toxicology
Volume77
Issue number2
DOIs
StatePublished - May 1 2006

Fingerprint

Dietary Sodium Chloride
food selection
Food Preferences
Oncorhynchus mykiss
sodium chloride
food choices
rainbow
physiology
Fishes
diet
Diet
Growth
Appetite
fish
appetite
Fresh Water
freshwater fish
Poisons
plasma
gills

Keywords

  • Dietary NaCl
  • Feeding behavior
  • Na and Cu homeostasis
  • Rainbow trout
  • Waterborne Cu

ASJC Scopus subject areas

  • Aquatic Science

Cite this

Food selection, growth and physiology in relation to dietary sodium chloride content in rainbow trout (Oncorhynchus mykiss) under chronic waterborne Cu exposure. / Niyogi, S.; Kamunde, C. N.; Wood, C. M.

In: Aquatic Toxicology, Vol. 77, No. 2, 01.05.2006, p. 210-221.

Research output: Contribution to journalArticle

@article{969d1aeaeb2349fda0bee0d08ba053b6,
title = "Food selection, growth and physiology in relation to dietary sodium chloride content in rainbow trout (Oncorhynchus mykiss) under chronic waterborne Cu exposure",
abstract = "Waterborne Cu is toxic to Na+ and Cl- regulation in freshwater fish, and Cu is taken up, at least in part, via the Na+-transport pathway in the gills. Therefore, we hypothesized that freshwater fish may mitigate the toxic effects of waterborne Cu by selecting a NaCl-enriched diet over a normal diet. We tested this hypothesis in juvenile rainbow trout (Oncorhynchus mykiss) by offering them the choice between NaCl-enriched (1.9 mmol g-1 Na+) and normal (0.2 mmol g-1 Na+) diets under a chronic waterborne Cu exposure of 55 μg L-1 for a period of 28 days. Contrary to expectation, trout exhibited a preference for NaCl-enriched diet under control conditions, while exposure to chronic waterborne Cu severely disrupted their normal feeding pattern with an accompanying loss of preference for the NaCl-enriched diet. Waterborne Cu exposure also severely affected appetite and growth. Both appetite and growth gradually recovered with time, but remained significantly impaired relative to Cu-unexposed fish until the end of the exposure. Waterborne Cu exposure also significantly increased Cu accumulations in target organs (gill, liver, and gut), plasma and whole body. However, Cu accumulation decreased substantially towards the end of the exposure in target organs and whole body as well as in plasma in Cu-exposed fish with dietary choice relative to Cu-exposed fish with normal diet. These adjustments were concurrent with the gradual recovery of appetite, which also led to increased ingestion of the NaCl-enriched diet. Interestingly, this elevated dietary uptake of NaCl produced significant stimulation of Na+ efflux in Cu-exposed fish. Subsequently, it also led to significant elevation of Na+ levels in target organs and whole body, and restored the decrease of plasma Na+ and Cl- levels in Cu-exposed fish. The NaCl supplemented diet appeared to be beneficial in compensating Na+ and Cl- losses from the body induced by waterborne Cu. Overall, these results demonstrate that a NaCl-enriched diet, although consumed in relatively reduced quantities due to the impairment of food selection and appetite, can help to protect freshwater fish against chronic waterborne Cu toxicity.",
keywords = "Dietary NaCl, Feeding behavior, Na and Cu homeostasis, Rainbow trout, Waterborne Cu",
author = "S. Niyogi and Kamunde, {C. N.} and Wood, {C. M.}",
year = "2006",
month = "5",
day = "1",
doi = "10.1016/j.aquatox.2005.12.005",
language = "English",
volume = "77",
pages = "210--221",
journal = "Aquatic Toxicology",
issn = "0166-445X",
publisher = "Elsevier",
number = "2",

}

TY - JOUR

T1 - Food selection, growth and physiology in relation to dietary sodium chloride content in rainbow trout (Oncorhynchus mykiss) under chronic waterborne Cu exposure

AU - Niyogi, S.

AU - Kamunde, C. N.

AU - Wood, C. M.

PY - 2006/5/1

Y1 - 2006/5/1

N2 - Waterborne Cu is toxic to Na+ and Cl- regulation in freshwater fish, and Cu is taken up, at least in part, via the Na+-transport pathway in the gills. Therefore, we hypothesized that freshwater fish may mitigate the toxic effects of waterborne Cu by selecting a NaCl-enriched diet over a normal diet. We tested this hypothesis in juvenile rainbow trout (Oncorhynchus mykiss) by offering them the choice between NaCl-enriched (1.9 mmol g-1 Na+) and normal (0.2 mmol g-1 Na+) diets under a chronic waterborne Cu exposure of 55 μg L-1 for a period of 28 days. Contrary to expectation, trout exhibited a preference for NaCl-enriched diet under control conditions, while exposure to chronic waterborne Cu severely disrupted their normal feeding pattern with an accompanying loss of preference for the NaCl-enriched diet. Waterborne Cu exposure also severely affected appetite and growth. Both appetite and growth gradually recovered with time, but remained significantly impaired relative to Cu-unexposed fish until the end of the exposure. Waterborne Cu exposure also significantly increased Cu accumulations in target organs (gill, liver, and gut), plasma and whole body. However, Cu accumulation decreased substantially towards the end of the exposure in target organs and whole body as well as in plasma in Cu-exposed fish with dietary choice relative to Cu-exposed fish with normal diet. These adjustments were concurrent with the gradual recovery of appetite, which also led to increased ingestion of the NaCl-enriched diet. Interestingly, this elevated dietary uptake of NaCl produced significant stimulation of Na+ efflux in Cu-exposed fish. Subsequently, it also led to significant elevation of Na+ levels in target organs and whole body, and restored the decrease of plasma Na+ and Cl- levels in Cu-exposed fish. The NaCl supplemented diet appeared to be beneficial in compensating Na+ and Cl- losses from the body induced by waterborne Cu. Overall, these results demonstrate that a NaCl-enriched diet, although consumed in relatively reduced quantities due to the impairment of food selection and appetite, can help to protect freshwater fish against chronic waterborne Cu toxicity.

AB - Waterborne Cu is toxic to Na+ and Cl- regulation in freshwater fish, and Cu is taken up, at least in part, via the Na+-transport pathway in the gills. Therefore, we hypothesized that freshwater fish may mitigate the toxic effects of waterborne Cu by selecting a NaCl-enriched diet over a normal diet. We tested this hypothesis in juvenile rainbow trout (Oncorhynchus mykiss) by offering them the choice between NaCl-enriched (1.9 mmol g-1 Na+) and normal (0.2 mmol g-1 Na+) diets under a chronic waterborne Cu exposure of 55 μg L-1 for a period of 28 days. Contrary to expectation, trout exhibited a preference for NaCl-enriched diet under control conditions, while exposure to chronic waterborne Cu severely disrupted their normal feeding pattern with an accompanying loss of preference for the NaCl-enriched diet. Waterborne Cu exposure also severely affected appetite and growth. Both appetite and growth gradually recovered with time, but remained significantly impaired relative to Cu-unexposed fish until the end of the exposure. Waterborne Cu exposure also significantly increased Cu accumulations in target organs (gill, liver, and gut), plasma and whole body. However, Cu accumulation decreased substantially towards the end of the exposure in target organs and whole body as well as in plasma in Cu-exposed fish with dietary choice relative to Cu-exposed fish with normal diet. These adjustments were concurrent with the gradual recovery of appetite, which also led to increased ingestion of the NaCl-enriched diet. Interestingly, this elevated dietary uptake of NaCl produced significant stimulation of Na+ efflux in Cu-exposed fish. Subsequently, it also led to significant elevation of Na+ levels in target organs and whole body, and restored the decrease of plasma Na+ and Cl- levels in Cu-exposed fish. The NaCl supplemented diet appeared to be beneficial in compensating Na+ and Cl- losses from the body induced by waterborne Cu. Overall, these results demonstrate that a NaCl-enriched diet, although consumed in relatively reduced quantities due to the impairment of food selection and appetite, can help to protect freshwater fish against chronic waterborne Cu toxicity.

KW - Dietary NaCl

KW - Feeding behavior

KW - Na and Cu homeostasis

KW - Rainbow trout

KW - Waterborne Cu

UR - http://www.scopus.com/inward/record.url?scp=33645896135&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33645896135&partnerID=8YFLogxK

U2 - 10.1016/j.aquatox.2005.12.005

DO - 10.1016/j.aquatox.2005.12.005

M3 - Article

VL - 77

SP - 210

EP - 221

JO - Aquatic Toxicology

JF - Aquatic Toxicology

SN - 0166-445X

IS - 2

ER -