Fluorescence modulation with photochromic switches in nanostructured constructs

Ibrahim Yildiz, Erhan Deniz, Françisco M. Raymo

Research output: Contribution to journalArticle

248 Scopus citations

Abstract

This tutorial review illustrates the structural design, photochemical and photophysical properties of nanostructured constructs incorporating luminescent and photochromic components. In these systems, the pronounced structural and electronic modifications that accompany the transformations of the photochromic components can be exploited to modulate the emission intensity of the luminescent components on the basis of electron and energy transfer processes. These photoresponsive systems can be assembled by: (1) integrating fluorescent and photochromic components within the main chain of the same polymer; (2) attaching multiple photochromes to a fluorescent organic polymer or luminescent inorganic nanoparticle; (3) appending either independent fluorophores and photochromes or fluorophore-photochrome dyads to a common polymer scaffold; (4) trapping distinct fluorophores and photochromes within the hydrophobic interior of the same cross-linked polymer. In all instances, the changes in absorbance and/or redox potentials associated with the reversible interconversion of the two states of each photochromic component regulate the radiative deactivation of the luminescent components. As a result, the emission intensity of these nanoscaled assemblies can reversibly be switched between high and low values under the influence of optical stimulations. Thus, these clever operating principles for fluorescence modulation can lead to the development of innovative functional and nanostructured materials with photoresponsive character. In particular, protocols for the optical writing and reading of data as well as luminescent probes for bioimaging applications might ultimately emerge from these fundamental studies on photoresponsive molecular switches.

Original languageEnglish (US)
Pages (from-to)1859-1867
Number of pages9
JournalChemical Society Reviews
Volume38
Issue number7
DOIs
StatePublished - Jun 23 2009

ASJC Scopus subject areas

  • Chemistry(all)

Fingerprint Dive into the research topics of 'Fluorescence modulation with photochromic switches in nanostructured constructs'. Together they form a unique fingerprint.

  • Cite this