Fluorescence modulation with photochromic switches

Françisco M. Raymo, Massimiliano Tomasulo

Research output: Contribution to journalArticle

182 Scopus citations

Abstract

Photochromic compounds change their color under illumination. In most instances, a colorless state switches to a colored one upon ultraviolet irradiation. The photogenerated species reverts to the original one either by thermal means or upon visible irradiation. These reversible transformations are accompanied by pronounced structural and electronic modifications, which often alter the ability of the photochromic compound to emit light. Under these conditions, the photoinduced and reversible interconversion of the colorless and colored states results in the modulation of the fluorescence intensity. Alternatively, fluorescence modulation can be implemented by attaching covalently a fluorescent group to a photochromic compound. Photoinduced changes in the dipole moment or conjugation of the photochromic component can then be designed to alter the emissive behavior of the fluorescent appendage. Similarly, photoinduced shifts in the redox potential or absorption wavelength of the photochromic fragment can be engineered to activate electron or energy, respectively, transfer pathways. Both processes can efficiently quench the fluorescence of the emissive component. Furthermore, the reversible absorption changes of a photochromic compound can effectively filter the emission of a compatible, but separate, fluorophore as long as the emission bands of the latter overlap the absorption bands of one of the two states of the former. When this design requirement is satisfied, fluorescence modulation can be achieved even if the two functional components are operated in distinct environments. Thus, either one of these ingenious mechanisms can be exploited to regulate the emissive behavior of collections of molecules in solution or even in rigid matrixes. In fact, the investigation of these fascinating systems can eventually lead to novel photoresponsive materials for photonic applications, while contributing to advance our basic understanding of the photochemical and photophysical properties of organic compounds.

Original languageEnglish (US)
Pages (from-to)7343-7352
Number of pages10
JournalJournal of Physical Chemistry A
Volume109
Issue number33
DOIs
StatePublished - Aug 25 2005

    Fingerprint

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry

Cite this