Abstract
Beginning with a generalized s-d Hamiltonian and including a term which induces electron-lattice relaxation, the Abrikosov fermion representation of spins and the Feynman-diagram technique are used to investigate the dynamics of localized moments. The analysis is performed for arbitrary spin, and in the presence of a fine-structure splitting of the localized-moment resonance by the crystalline field. A set of coupled linear equations is obtained which determines the macroscopic dynamic transverse susceptibility and which, under certain circumstances, is equivalent to a set of 2S+1 coupled Bloch-type equations. These equations are analyzed in some detail for the high-temperature regime kT SgsμBH0. In contrast to the case of the hyperfine splitting of a localized moment, it is found that the Korringa process alone leads to a narrowing of the resonance linewidth, even in the absence of a bottleneck. However, when the bottleneck is present, these narrowing processes are even larger. For a reasonable value of the exchange constant, it is at least qualitatively possible to explain the anisotropic behavior observed in recent electron-spin-resonance experiments of Mg:Gd alloys in terms of unresolved fine structure.
Original language | English (US) |
---|---|
Pages (from-to) | 4789-4807 |
Number of pages | 19 |
Journal | Physical Review B |
Volume | 9 |
Issue number | 11 |
DOIs | |
State | Published - Jan 1 1974 |
Externally published | Yes |
ASJC Scopus subject areas
- Condensed Matter Physics