Fatigue properties of human thenar motor units paralysed by chronic spinal cord injury

C. S. Klein, C. K. Häger-Ross, Christine K Thomas

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

Human muscles paralysed chronically by spinal cord injury (SCI) fatigue excessively. Whether these reductions in force reflect a decrease in the fatigue resistance of the motor units is unknown. Our aim was to determine the fatigability of thenar motor units paralysed chronically (10 ± 2 years) by cervical SCI. Surface electromyographic activity (EMG) and force were recorded from 17 paralysed motor units (n = 7 subjects) in response to intraneural motor axon stimulation (13 pulses at 40 Hz, 1 s-1 for 2 min). Unit force decreased progressively, reaching 8-60% of initial after 2 min, whereas both the amplitude and area of the first EMG potentials in the trains increased significantly (both P < 0.05). Thus, transmission of neural signals to the sarcolemma was effective and the reduction in force must reflect impaired processes in the muscle fibres. The median fatigue index for paralysed units (0.31), the ratio of the force at 2 min compared to the initial force, was significantly lower than that for units from control subjects (0.85, P < 0.05), but the distribution of fatigue indices for each population had a similar shape (ranges: 0.08-0.60 and 0.41-0.95, respectively). Hence, chronic paralysis did not limit the range of fatigability typically found for thenar units, only its magnitude. These findings suggest that all paralysed units underwent similar reductions in fatigue resistance. After fatigue, paralysed unit forces were reduced at all frequencies (1-100 Hz, P < 0.05). Twitch contraction and half-relaxation times were increased, as was the frequency needed to produce half maximal force (P < 0.05). Thus, stimulation protocols used to produce functional movements in paralysed muscles need to accommodate the significant and rapid fatigue of the motor units.

Original languageEnglish
Pages (from-to)161-171
Number of pages11
JournalJournal of Physiology
Volume573
Issue number1
DOIs
StatePublished - May 15 2006

Fingerprint

Spinal Cord Injuries
Fatigue
Muscles
Sarcolemma
Synaptic Transmission
Paralysis
Axons
Population

ASJC Scopus subject areas

  • Physiology

Cite this

Fatigue properties of human thenar motor units paralysed by chronic spinal cord injury. / Klein, C. S.; Häger-Ross, C. K.; Thomas, Christine K.

In: Journal of Physiology, Vol. 573, No. 1, 15.05.2006, p. 161-171.

Research output: Contribution to journalArticle

Klein, C. S. ; Häger-Ross, C. K. ; Thomas, Christine K. / Fatigue properties of human thenar motor units paralysed by chronic spinal cord injury. In: Journal of Physiology. 2006 ; Vol. 573, No. 1. pp. 161-171.
@article{6e09e5e8d172471db3ced9b78bc71760,
title = "Fatigue properties of human thenar motor units paralysed by chronic spinal cord injury",
abstract = "Human muscles paralysed chronically by spinal cord injury (SCI) fatigue excessively. Whether these reductions in force reflect a decrease in the fatigue resistance of the motor units is unknown. Our aim was to determine the fatigability of thenar motor units paralysed chronically (10 ± 2 years) by cervical SCI. Surface electromyographic activity (EMG) and force were recorded from 17 paralysed motor units (n = 7 subjects) in response to intraneural motor axon stimulation (13 pulses at 40 Hz, 1 s-1 for 2 min). Unit force decreased progressively, reaching 8-60{\%} of initial after 2 min, whereas both the amplitude and area of the first EMG potentials in the trains increased significantly (both P < 0.05). Thus, transmission of neural signals to the sarcolemma was effective and the reduction in force must reflect impaired processes in the muscle fibres. The median fatigue index for paralysed units (0.31), the ratio of the force at 2 min compared to the initial force, was significantly lower than that for units from control subjects (0.85, P < 0.05), but the distribution of fatigue indices for each population had a similar shape (ranges: 0.08-0.60 and 0.41-0.95, respectively). Hence, chronic paralysis did not limit the range of fatigability typically found for thenar units, only its magnitude. These findings suggest that all paralysed units underwent similar reductions in fatigue resistance. After fatigue, paralysed unit forces were reduced at all frequencies (1-100 Hz, P < 0.05). Twitch contraction and half-relaxation times were increased, as was the frequency needed to produce half maximal force (P < 0.05). Thus, stimulation protocols used to produce functional movements in paralysed muscles need to accommodate the significant and rapid fatigue of the motor units.",
author = "Klein, {C. S.} and H{\"a}ger-Ross, {C. K.} and Thomas, {Christine K}",
year = "2006",
month = "5",
day = "15",
doi = "10.1113/jphysiol.2005.103044",
language = "English",
volume = "573",
pages = "161--171",
journal = "Journal of Physiology",
issn = "0022-3751",
publisher = "Wiley-Blackwell",
number = "1",

}

TY - JOUR

T1 - Fatigue properties of human thenar motor units paralysed by chronic spinal cord injury

AU - Klein, C. S.

AU - Häger-Ross, C. K.

AU - Thomas, Christine K

PY - 2006/5/15

Y1 - 2006/5/15

N2 - Human muscles paralysed chronically by spinal cord injury (SCI) fatigue excessively. Whether these reductions in force reflect a decrease in the fatigue resistance of the motor units is unknown. Our aim was to determine the fatigability of thenar motor units paralysed chronically (10 ± 2 years) by cervical SCI. Surface electromyographic activity (EMG) and force were recorded from 17 paralysed motor units (n = 7 subjects) in response to intraneural motor axon stimulation (13 pulses at 40 Hz, 1 s-1 for 2 min). Unit force decreased progressively, reaching 8-60% of initial after 2 min, whereas both the amplitude and area of the first EMG potentials in the trains increased significantly (both P < 0.05). Thus, transmission of neural signals to the sarcolemma was effective and the reduction in force must reflect impaired processes in the muscle fibres. The median fatigue index for paralysed units (0.31), the ratio of the force at 2 min compared to the initial force, was significantly lower than that for units from control subjects (0.85, P < 0.05), but the distribution of fatigue indices for each population had a similar shape (ranges: 0.08-0.60 and 0.41-0.95, respectively). Hence, chronic paralysis did not limit the range of fatigability typically found for thenar units, only its magnitude. These findings suggest that all paralysed units underwent similar reductions in fatigue resistance. After fatigue, paralysed unit forces were reduced at all frequencies (1-100 Hz, P < 0.05). Twitch contraction and half-relaxation times were increased, as was the frequency needed to produce half maximal force (P < 0.05). Thus, stimulation protocols used to produce functional movements in paralysed muscles need to accommodate the significant and rapid fatigue of the motor units.

AB - Human muscles paralysed chronically by spinal cord injury (SCI) fatigue excessively. Whether these reductions in force reflect a decrease in the fatigue resistance of the motor units is unknown. Our aim was to determine the fatigability of thenar motor units paralysed chronically (10 ± 2 years) by cervical SCI. Surface electromyographic activity (EMG) and force were recorded from 17 paralysed motor units (n = 7 subjects) in response to intraneural motor axon stimulation (13 pulses at 40 Hz, 1 s-1 for 2 min). Unit force decreased progressively, reaching 8-60% of initial after 2 min, whereas both the amplitude and area of the first EMG potentials in the trains increased significantly (both P < 0.05). Thus, transmission of neural signals to the sarcolemma was effective and the reduction in force must reflect impaired processes in the muscle fibres. The median fatigue index for paralysed units (0.31), the ratio of the force at 2 min compared to the initial force, was significantly lower than that for units from control subjects (0.85, P < 0.05), but the distribution of fatigue indices for each population had a similar shape (ranges: 0.08-0.60 and 0.41-0.95, respectively). Hence, chronic paralysis did not limit the range of fatigability typically found for thenar units, only its magnitude. These findings suggest that all paralysed units underwent similar reductions in fatigue resistance. After fatigue, paralysed unit forces were reduced at all frequencies (1-100 Hz, P < 0.05). Twitch contraction and half-relaxation times were increased, as was the frequency needed to produce half maximal force (P < 0.05). Thus, stimulation protocols used to produce functional movements in paralysed muscles need to accommodate the significant and rapid fatigue of the motor units.

UR - http://www.scopus.com/inward/record.url?scp=33646359420&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33646359420&partnerID=8YFLogxK

U2 - 10.1113/jphysiol.2005.103044

DO - 10.1113/jphysiol.2005.103044

M3 - Article

VL - 573

SP - 161

EP - 171

JO - Journal of Physiology

JF - Journal of Physiology

SN - 0022-3751

IS - 1

ER -