Evaluation of factors predicting accurate resection of high-grade gliomas by using frameless image-guided stereotactic guidance.

Ronald Benveniste, Isabelle M. Germano

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

OBJECT: Frameless image-guided stereotaxy is often used in the resection of high-grade gliomas. The authors of several studies, however, have suggested that brain shift may occur intraoperatively and result in inaccurate resection. To determine the usefulness of frameless stereotactic image-guided surgery of high-grade gliomas, the authors correlated factors predictive of brain shift, such as tumor size, periventricular location, and patient age (as an indicator of brain atrophy) with the extent of resection. METHODS: Inclusion criteria included the following: 1) stereotactic volumetric craniotomy for resection of tumor; 2) histologically proven high-grade glioma; 3) preoperative magnetic resonance (MR) imaging demonstration of an enhancing portion of tumor; 4) postoperative MR imaging within 48 hours to assess the extent of resection; and 5) preoperative intention to perform gross-total resection of the enhancing tumor. Fifty-four patients met these criteria between September 1997 and November 2002. Accurate resection was considered to be indicated by a lack of nodular enhancement on postoperative Gd-enhanced MR images obtained within 48 hours of surgery. Frameless stereotactic image-guided surgery resulted in the successful resection of 46 (85%) of 54 high-grade gliomas. Accurate resection was significantly more likely with tumors less than 30 ml in volume than with those greater than 30 ml (93 and 58%, respectively [p < 0.05]). In addition, small periventricular tumors were associated with significant less successful resection compared with nonperiventricular tumor (77 and 96%, respectively [p = 0.5]). Patient age did not affect the likelihood of successful resection. CONCLUSIONS: Frameless image-guided stereotactic techniques can be reliably used for accurate resection of high-grade gliomas when the tumor is less than 30 ml in volume and not adjacent to the ventricular system. In cases involving tumors larger in volume or located near the ventricles, intraoperative ultrasonography or MR imaging updates should be considered.

Original languageEnglish
JournalNeurosurgical focus [electronic resource].
Volume14
Issue number2
StatePublished - Feb 15 2003
Externally publishedYes

Fingerprint

Glioma
Neoplasms
Computer-Assisted Surgery
Magnetic Resonance Imaging
Brain
Stereotaxic Techniques
Craniotomy
Atrophy
Ultrasonography
Magnetic Resonance Spectroscopy

Cite this

@article{67dcf2336fd24647a4e88f5d45ded7cb,
title = "Evaluation of factors predicting accurate resection of high-grade gliomas by using frameless image-guided stereotactic guidance.",
abstract = "OBJECT: Frameless image-guided stereotaxy is often used in the resection of high-grade gliomas. The authors of several studies, however, have suggested that brain shift may occur intraoperatively and result in inaccurate resection. To determine the usefulness of frameless stereotactic image-guided surgery of high-grade gliomas, the authors correlated factors predictive of brain shift, such as tumor size, periventricular location, and patient age (as an indicator of brain atrophy) with the extent of resection. METHODS: Inclusion criteria included the following: 1) stereotactic volumetric craniotomy for resection of tumor; 2) histologically proven high-grade glioma; 3) preoperative magnetic resonance (MR) imaging demonstration of an enhancing portion of tumor; 4) postoperative MR imaging within 48 hours to assess the extent of resection; and 5) preoperative intention to perform gross-total resection of the enhancing tumor. Fifty-four patients met these criteria between September 1997 and November 2002. Accurate resection was considered to be indicated by a lack of nodular enhancement on postoperative Gd-enhanced MR images obtained within 48 hours of surgery. Frameless stereotactic image-guided surgery resulted in the successful resection of 46 (85{\%}) of 54 high-grade gliomas. Accurate resection was significantly more likely with tumors less than 30 ml in volume than with those greater than 30 ml (93 and 58{\%}, respectively [p < 0.05]). In addition, small periventricular tumors were associated with significant less successful resection compared with nonperiventricular tumor (77 and 96{\%}, respectively [p = 0.5]). Patient age did not affect the likelihood of successful resection. CONCLUSIONS: Frameless image-guided stereotactic techniques can be reliably used for accurate resection of high-grade gliomas when the tumor is less than 30 ml in volume and not adjacent to the ventricular system. In cases involving tumors larger in volume or located near the ventricles, intraoperative ultrasonography or MR imaging updates should be considered.",
author = "Ronald Benveniste and Germano, {Isabelle M.}",
year = "2003",
month = "2",
day = "15",
language = "English",
volume = "14",
journal = "Neurosurgical Focus",
issn = "1092-0684",
publisher = "American Association of Neurological Surgeons",
number = "2",

}

TY - JOUR

T1 - Evaluation of factors predicting accurate resection of high-grade gliomas by using frameless image-guided stereotactic guidance.

AU - Benveniste, Ronald

AU - Germano, Isabelle M.

PY - 2003/2/15

Y1 - 2003/2/15

N2 - OBJECT: Frameless image-guided stereotaxy is often used in the resection of high-grade gliomas. The authors of several studies, however, have suggested that brain shift may occur intraoperatively and result in inaccurate resection. To determine the usefulness of frameless stereotactic image-guided surgery of high-grade gliomas, the authors correlated factors predictive of brain shift, such as tumor size, periventricular location, and patient age (as an indicator of brain atrophy) with the extent of resection. METHODS: Inclusion criteria included the following: 1) stereotactic volumetric craniotomy for resection of tumor; 2) histologically proven high-grade glioma; 3) preoperative magnetic resonance (MR) imaging demonstration of an enhancing portion of tumor; 4) postoperative MR imaging within 48 hours to assess the extent of resection; and 5) preoperative intention to perform gross-total resection of the enhancing tumor. Fifty-four patients met these criteria between September 1997 and November 2002. Accurate resection was considered to be indicated by a lack of nodular enhancement on postoperative Gd-enhanced MR images obtained within 48 hours of surgery. Frameless stereotactic image-guided surgery resulted in the successful resection of 46 (85%) of 54 high-grade gliomas. Accurate resection was significantly more likely with tumors less than 30 ml in volume than with those greater than 30 ml (93 and 58%, respectively [p < 0.05]). In addition, small periventricular tumors were associated with significant less successful resection compared with nonperiventricular tumor (77 and 96%, respectively [p = 0.5]). Patient age did not affect the likelihood of successful resection. CONCLUSIONS: Frameless image-guided stereotactic techniques can be reliably used for accurate resection of high-grade gliomas when the tumor is less than 30 ml in volume and not adjacent to the ventricular system. In cases involving tumors larger in volume or located near the ventricles, intraoperative ultrasonography or MR imaging updates should be considered.

AB - OBJECT: Frameless image-guided stereotaxy is often used in the resection of high-grade gliomas. The authors of several studies, however, have suggested that brain shift may occur intraoperatively and result in inaccurate resection. To determine the usefulness of frameless stereotactic image-guided surgery of high-grade gliomas, the authors correlated factors predictive of brain shift, such as tumor size, periventricular location, and patient age (as an indicator of brain atrophy) with the extent of resection. METHODS: Inclusion criteria included the following: 1) stereotactic volumetric craniotomy for resection of tumor; 2) histologically proven high-grade glioma; 3) preoperative magnetic resonance (MR) imaging demonstration of an enhancing portion of tumor; 4) postoperative MR imaging within 48 hours to assess the extent of resection; and 5) preoperative intention to perform gross-total resection of the enhancing tumor. Fifty-four patients met these criteria between September 1997 and November 2002. Accurate resection was considered to be indicated by a lack of nodular enhancement on postoperative Gd-enhanced MR images obtained within 48 hours of surgery. Frameless stereotactic image-guided surgery resulted in the successful resection of 46 (85%) of 54 high-grade gliomas. Accurate resection was significantly more likely with tumors less than 30 ml in volume than with those greater than 30 ml (93 and 58%, respectively [p < 0.05]). In addition, small periventricular tumors were associated with significant less successful resection compared with nonperiventricular tumor (77 and 96%, respectively [p = 0.5]). Patient age did not affect the likelihood of successful resection. CONCLUSIONS: Frameless image-guided stereotactic techniques can be reliably used for accurate resection of high-grade gliomas when the tumor is less than 30 ml in volume and not adjacent to the ventricular system. In cases involving tumors larger in volume or located near the ventricles, intraoperative ultrasonography or MR imaging updates should be considered.

UR - http://www.scopus.com/inward/record.url?scp=20344395975&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=20344395975&partnerID=8YFLogxK

M3 - Article

C2 - 15727426

AN - SCOPUS:20344395975

VL - 14

JO - Neurosurgical Focus

JF - Neurosurgical Focus

SN - 1092-0684

IS - 2

ER -