Estimating kinetic parameters for single channels with simulation. A general method that resolves the missed event problem and accounts for noise

Karl Magleby, D. S. Weiss

Research output: Contribution to journalArticle

45 Citations (Scopus)

Abstract

Analysis of currents recorded from single channels is complicated by the limited time resolution (filtering) of the data which can prevent the detection of brief intervals. Although a number of approaches have been used to correct for the undetected intervals (missed events) when identifying kinetic models and estimating parameters, none of them provide a general method which takes into account the true effects of noise and limited time resolution. This paper presents such a method. The approach is to use simulated single-channel currents to incorporate the true effects of filtering and noise on missed events and interval durations. The simulated currents are then analyzed in a manner identical to that used to analyze the experimental currents. An iterative search process using likelihood comparison of two-dimensional dwell-time distributions obtained from the simulated and experimental single-channel currents then allows the most likely rate constants to be determined. The large errors and false solutions that can result from the more typically applied assumptions of no noise and an absolute dead time (idealized filtering) are excluded by the iterative simulation method, and the correlation information contained in the two-dimensional distributions should increase the ability to distinguish among different gating mechanisms. The iterative simulation method is generally applicable to channels which typically open to a single conductance level. For these channels the method places no restrictions on the proposed gating mechanism or the form of the predicted dwell-time distributions.

Original languageEnglish
Pages (from-to)1411-1426
Number of pages16
JournalBiophysical Journal
Volume58
Issue number6
StatePublished - Dec 1 1990

Fingerprint

Noise

ASJC Scopus subject areas

  • Biophysics

Cite this

@article{00d7c1f4d51e4839ae2d0599019ad2f4,
title = "Estimating kinetic parameters for single channels with simulation. A general method that resolves the missed event problem and accounts for noise",
abstract = "Analysis of currents recorded from single channels is complicated by the limited time resolution (filtering) of the data which can prevent the detection of brief intervals. Although a number of approaches have been used to correct for the undetected intervals (missed events) when identifying kinetic models and estimating parameters, none of them provide a general method which takes into account the true effects of noise and limited time resolution. This paper presents such a method. The approach is to use simulated single-channel currents to incorporate the true effects of filtering and noise on missed events and interval durations. The simulated currents are then analyzed in a manner identical to that used to analyze the experimental currents. An iterative search process using likelihood comparison of two-dimensional dwell-time distributions obtained from the simulated and experimental single-channel currents then allows the most likely rate constants to be determined. The large errors and false solutions that can result from the more typically applied assumptions of no noise and an absolute dead time (idealized filtering) are excluded by the iterative simulation method, and the correlation information contained in the two-dimensional distributions should increase the ability to distinguish among different gating mechanisms. The iterative simulation method is generally applicable to channels which typically open to a single conductance level. For these channels the method places no restrictions on the proposed gating mechanism or the form of the predicted dwell-time distributions.",
author = "Karl Magleby and Weiss, {D. S.}",
year = "1990",
month = "12",
day = "1",
language = "English",
volume = "58",
pages = "1411--1426",
journal = "Biophysical Journal",
issn = "0006-3495",
publisher = "Biophysical Society",
number = "6",

}

TY - JOUR

T1 - Estimating kinetic parameters for single channels with simulation. A general method that resolves the missed event problem and accounts for noise

AU - Magleby, Karl

AU - Weiss, D. S.

PY - 1990/12/1

Y1 - 1990/12/1

N2 - Analysis of currents recorded from single channels is complicated by the limited time resolution (filtering) of the data which can prevent the detection of brief intervals. Although a number of approaches have been used to correct for the undetected intervals (missed events) when identifying kinetic models and estimating parameters, none of them provide a general method which takes into account the true effects of noise and limited time resolution. This paper presents such a method. The approach is to use simulated single-channel currents to incorporate the true effects of filtering and noise on missed events and interval durations. The simulated currents are then analyzed in a manner identical to that used to analyze the experimental currents. An iterative search process using likelihood comparison of two-dimensional dwell-time distributions obtained from the simulated and experimental single-channel currents then allows the most likely rate constants to be determined. The large errors and false solutions that can result from the more typically applied assumptions of no noise and an absolute dead time (idealized filtering) are excluded by the iterative simulation method, and the correlation information contained in the two-dimensional distributions should increase the ability to distinguish among different gating mechanisms. The iterative simulation method is generally applicable to channels which typically open to a single conductance level. For these channels the method places no restrictions on the proposed gating mechanism or the form of the predicted dwell-time distributions.

AB - Analysis of currents recorded from single channels is complicated by the limited time resolution (filtering) of the data which can prevent the detection of brief intervals. Although a number of approaches have been used to correct for the undetected intervals (missed events) when identifying kinetic models and estimating parameters, none of them provide a general method which takes into account the true effects of noise and limited time resolution. This paper presents such a method. The approach is to use simulated single-channel currents to incorporate the true effects of filtering and noise on missed events and interval durations. The simulated currents are then analyzed in a manner identical to that used to analyze the experimental currents. An iterative search process using likelihood comparison of two-dimensional dwell-time distributions obtained from the simulated and experimental single-channel currents then allows the most likely rate constants to be determined. The large errors and false solutions that can result from the more typically applied assumptions of no noise and an absolute dead time (idealized filtering) are excluded by the iterative simulation method, and the correlation information contained in the two-dimensional distributions should increase the ability to distinguish among different gating mechanisms. The iterative simulation method is generally applicable to channels which typically open to a single conductance level. For these channels the method places no restrictions on the proposed gating mechanism or the form of the predicted dwell-time distributions.

UR - http://www.scopus.com/inward/record.url?scp=0025641784&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025641784&partnerID=8YFLogxK

M3 - Article

VL - 58

SP - 1411

EP - 1426

JO - Biophysical Journal

JF - Biophysical Journal

SN - 0006-3495

IS - 6

ER -