Esophageal desalination is mediated by Na+, H+ exchanger-2 in the gulf toadfish (Opsanus beta)

Andrew J. Esbaugh, Martin Grosell

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Esophageal desalination is a crucial step in the gastrointestinal water absorption pathway, as this pre-intestinal processing establishes the osmotic conditions necessary for water absorption. Previous work has shown that esophageal Na+ absorption is amiloride sensitive; however, it is as yet unclear if Na+, H+ exchangers (NHE) or Na+ channels (ENaC) are responsible. The purpose of the current study was therefore to investigate the roles that NHE isoforms may play in this process in a marine teleost, the gulf toadfish (Opsanus beta), as well as what role NHE isoforms may play in the downstream intestinal Na+ transport. A combination of symmetrical current clamp and asymmetrical voltage clamp experiments showed the esophagus to contain both an ion absorptive current (Isc=0.83±0.68) and serosal side negative transepithelial potential (TEP=-4.9±0.6). 22Na uptake (JNam→s) was inhibited by 0.5mM EIPA, with no effect of 0.1mM amiloride, 1mM furosemide or 1mM thiazide. A Cl- free saline reduced JNam→s by 40% while also reducing conductance and reversing TEP. These results suggest that both transcellular and paracellular components contribute to esophageal Na+ transport, with transcellular transport mediated by NHE. The NHE1, NHE2 and NHE3 genes were amplified and tissue distribution analysis by real-time PCR showed high NHE2 expression levels in the esophagus and stomach. Little NHE3 expression was observed throughout the gastrointestinal tract, and NHE2 expression was absent from the intestine. Hypersalinity (60ppt) had no effect on the expression profile of NHE2, slc4a2, scl26a6, CAc or V-type ATPase (β-subunit), suggesting that esophageal desalination is less flexible in response to osmotic stress than the intestine.

Original languageEnglish
Pages (from-to)57-63
Number of pages7
JournalComparative Biochemistry and Physiology - A Molecular and Integrative Physiology
Volume171
DOIs
StatePublished - May 1 2014

Fingerprint

Batrachoidiformes
Sodium-Hydrogen Antiporter
Desalination
Amiloride
Clamping devices
Water absorption
Esophagus
Intestines
Protein Isoforms
Vacuolar Proton-Translocating ATPases
Thiazides
Transcytosis
Osmoregulation
Water
Furosemide
Tissue Distribution
Gastrointestinal Tract
Real-Time Polymerase Chain Reaction
Stomach
Genes

Keywords

  • Chloride
  • Hypersalinity
  • Intestinal water transport
  • NHE
  • Osmoregulation

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Physiology

Cite this

@article{1181d0bca721422e8a4833f3ae554fcb,
title = "Esophageal desalination is mediated by Na+, H+ exchanger-2 in the gulf toadfish (Opsanus beta)",
abstract = "Esophageal desalination is a crucial step in the gastrointestinal water absorption pathway, as this pre-intestinal processing establishes the osmotic conditions necessary for water absorption. Previous work has shown that esophageal Na+ absorption is amiloride sensitive; however, it is as yet unclear if Na+, H+ exchangers (NHE) or Na+ channels (ENaC) are responsible. The purpose of the current study was therefore to investigate the roles that NHE isoforms may play in this process in a marine teleost, the gulf toadfish (Opsanus beta), as well as what role NHE isoforms may play in the downstream intestinal Na+ transport. A combination of symmetrical current clamp and asymmetrical voltage clamp experiments showed the esophagus to contain both an ion absorptive current (Isc=0.83±0.68) and serosal side negative transepithelial potential (TEP=-4.9±0.6). 22Na uptake (JNam→s) was inhibited by 0.5mM EIPA, with no effect of 0.1mM amiloride, 1mM furosemide or 1mM thiazide. A Cl- free saline reduced JNam→s by 40{\%} while also reducing conductance and reversing TEP. These results suggest that both transcellular and paracellular components contribute to esophageal Na+ transport, with transcellular transport mediated by NHE. The NHE1, NHE2 and NHE3 genes were amplified and tissue distribution analysis by real-time PCR showed high NHE2 expression levels in the esophagus and stomach. Little NHE3 expression was observed throughout the gastrointestinal tract, and NHE2 expression was absent from the intestine. Hypersalinity (60ppt) had no effect on the expression profile of NHE2, slc4a2, scl26a6, CAc or V-type ATPase (β-subunit), suggesting that esophageal desalination is less flexible in response to osmotic stress than the intestine.",
keywords = "Chloride, Hypersalinity, Intestinal water transport, NHE, Osmoregulation",
author = "Esbaugh, {Andrew J.} and Martin Grosell",
year = "2014",
month = "5",
day = "1",
doi = "10.1016/j.cbpa.2014.02.012",
language = "English",
volume = "171",
pages = "57--63",
journal = "Comparative Biochemistry & Physiology; A: Comparative Physiology",
issn = "1095-6433",
publisher = "Elsevier Inc.",

}

TY - JOUR

T1 - Esophageal desalination is mediated by Na+, H+ exchanger-2 in the gulf toadfish (Opsanus beta)

AU - Esbaugh, Andrew J.

AU - Grosell, Martin

PY - 2014/5/1

Y1 - 2014/5/1

N2 - Esophageal desalination is a crucial step in the gastrointestinal water absorption pathway, as this pre-intestinal processing establishes the osmotic conditions necessary for water absorption. Previous work has shown that esophageal Na+ absorption is amiloride sensitive; however, it is as yet unclear if Na+, H+ exchangers (NHE) or Na+ channels (ENaC) are responsible. The purpose of the current study was therefore to investigate the roles that NHE isoforms may play in this process in a marine teleost, the gulf toadfish (Opsanus beta), as well as what role NHE isoforms may play in the downstream intestinal Na+ transport. A combination of symmetrical current clamp and asymmetrical voltage clamp experiments showed the esophagus to contain both an ion absorptive current (Isc=0.83±0.68) and serosal side negative transepithelial potential (TEP=-4.9±0.6). 22Na uptake (JNam→s) was inhibited by 0.5mM EIPA, with no effect of 0.1mM amiloride, 1mM furosemide or 1mM thiazide. A Cl- free saline reduced JNam→s by 40% while also reducing conductance and reversing TEP. These results suggest that both transcellular and paracellular components contribute to esophageal Na+ transport, with transcellular transport mediated by NHE. The NHE1, NHE2 and NHE3 genes were amplified and tissue distribution analysis by real-time PCR showed high NHE2 expression levels in the esophagus and stomach. Little NHE3 expression was observed throughout the gastrointestinal tract, and NHE2 expression was absent from the intestine. Hypersalinity (60ppt) had no effect on the expression profile of NHE2, slc4a2, scl26a6, CAc or V-type ATPase (β-subunit), suggesting that esophageal desalination is less flexible in response to osmotic stress than the intestine.

AB - Esophageal desalination is a crucial step in the gastrointestinal water absorption pathway, as this pre-intestinal processing establishes the osmotic conditions necessary for water absorption. Previous work has shown that esophageal Na+ absorption is amiloride sensitive; however, it is as yet unclear if Na+, H+ exchangers (NHE) or Na+ channels (ENaC) are responsible. The purpose of the current study was therefore to investigate the roles that NHE isoforms may play in this process in a marine teleost, the gulf toadfish (Opsanus beta), as well as what role NHE isoforms may play in the downstream intestinal Na+ transport. A combination of symmetrical current clamp and asymmetrical voltage clamp experiments showed the esophagus to contain both an ion absorptive current (Isc=0.83±0.68) and serosal side negative transepithelial potential (TEP=-4.9±0.6). 22Na uptake (JNam→s) was inhibited by 0.5mM EIPA, with no effect of 0.1mM amiloride, 1mM furosemide or 1mM thiazide. A Cl- free saline reduced JNam→s by 40% while also reducing conductance and reversing TEP. These results suggest that both transcellular and paracellular components contribute to esophageal Na+ transport, with transcellular transport mediated by NHE. The NHE1, NHE2 and NHE3 genes were amplified and tissue distribution analysis by real-time PCR showed high NHE2 expression levels in the esophagus and stomach. Little NHE3 expression was observed throughout the gastrointestinal tract, and NHE2 expression was absent from the intestine. Hypersalinity (60ppt) had no effect on the expression profile of NHE2, slc4a2, scl26a6, CAc or V-type ATPase (β-subunit), suggesting that esophageal desalination is less flexible in response to osmotic stress than the intestine.

KW - Chloride

KW - Hypersalinity

KW - Intestinal water transport

KW - NHE

KW - Osmoregulation

UR - http://www.scopus.com/inward/record.url?scp=84896754511&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84896754511&partnerID=8YFLogxK

U2 - 10.1016/j.cbpa.2014.02.012

DO - 10.1016/j.cbpa.2014.02.012

M3 - Article

VL - 171

SP - 57

EP - 63

JO - Comparative Biochemistry & Physiology; A: Comparative Physiology

JF - Comparative Biochemistry & Physiology; A: Comparative Physiology

SN - 1095-6433

ER -