ER stress-mediated apoptosis in a new mouse model of Osteogenesis imperfecta

Thomas S. Lisse, Frank Thiele, Helmut Fuchs, Wolfgang Hans, Gerhard K.H. Przemeck, Koichiro Abe, Birgit Rathkolb, Leticia Quintanilla-Martinez, Gabriele Hoelzlwimmer, Miep Helfrich, Eckhard Wolf, Stuart H. Ralston, Martin Hrabé De Angelis

Research output: Contribution to journalArticlepeer-review

108 Scopus citations


Osteogenesis imperfecta is an inherited disorder characterized by increased bone fragility, fractures, and osteoporosis, and most cases are caused by mutations affecting the type I collagen genes. Here, we describe a new mouse model for Osteogenesis imperfecta termed Aga2 (abnormal gait 2) that was isolated from the Munich N-ethyl-N-nitrosourea mutagenesis program and exhibited phenotypic variability, including reduced bone mass, multiple fractures, and early lethality. The causal gene was mapped to Chromosome 11 by linkage analysis, and a C-terminal frameshift mutation was identified in the Col1a1 (procollagen type I, alpha 1) gene as the cause of the disorder. Aga2 heterozygous animals had markedly increased bone turnover and a disrupted native collagen network. Further studies showed that abnormal proα1(I) chains accumulated intracellularly in Aga2/+ dermal fibroblasts and were poorly secreted extracellularly. This was associated with the induction of an endoplasmic reticulum stress-specific unfolded protein response involving upregulation of BiP, Hsp47, and Gadd153 with caspases-12 and -3 activation and apoptosis of osteoblasts both in vitro and in vivo. These studies resulted in the identification of a new model for Osteogenesis imperfecta, and identified a role for intracellular modulation of the endoplasmic reticulum stress-associated unfolded protein response machinery toward osteoblast apoptosis during the pathogenesis of disease.

Original languageEnglish (US)
JournalPLoS genetics
Issue number2
StatePublished - Feb 2008
Externally publishedYes

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Genetics
  • Genetics(clinical)
  • Cancer Research


Dive into the research topics of 'ER stress-mediated apoptosis in a new mouse model of Osteogenesis imperfecta'. Together they form a unique fingerprint.

Cite this