Epigenomic and metabolic responses of hypothalamic POMC neurons to gestational nicotine exposure in adult offspring

Jose P. Silva, Guerline Lambert, Derek van Booven, Claes R Wahlestedt

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Background: Epidemiological and animal studies have reported that prenatal nicotine exposure (PNE) leads to obesity and type-2 diabetes in offspring. Central leptin-melanocortin signaling via hypothalamic arcuate proopiomelanocortin (POMC) neurons is crucial for the regulation of energy and glucose balance. Furthermore, hypothalamic POMC neurons were recently found to mediate the anorectic effects of nicotine through activation of acetylcholine receptors. Here, we hypothesized that PNE impairs leptin-melanocortinergic regulation of energy balance in first-generation offspring by altering expression of long non-coding RNAs (lncRNAs) putatively regulating development and/or function of hypothalamic POMC neurons. Methods: C57BL/6J females were exposed ad libitum to nicotine through drinking water and crossed with C57BL/6J males. Nicotine exposure was sustained during pregnancy and discontinued at parturition. Offspring development was monitored from birth into adulthood. From the age of 8 weeks, central leptin-melanocortin signaling, diabetes, and obesity susceptibility were assessed in male offspring fed a low-fat or high-fat diet for 16 weeks. Nicotine-exposed and non-exposed C57BL/6J females were also crossed with C57BL/6J males expressing the enhanced green fluorescent protein specifically in POMC neurons. Transgenic male offspring were subjected to laser microdissections and RNA sequencing (RNA-seq) analysis of POMC neurons for determination of nicotine-induced gene expression changes and regulatory lncRNA/protein-coding gene interactions. Results: Contrary to expectation based on previous studies, PNE did not impair but rather enhanced leptin-melanocortinergic regulation of energy and glucose balance via POMC neurons in offspring. RNA-seq of laser microdissected POMC neurons revealed only one consistent change, upregulation of Gm15851, a lncRNA of yet unidentified function, in nicotine-exposed offspring. RNA-seq further suggested 82 cis-regulatory lncRNA/protein-coding gene interactions, 19 of which involved coding genes regulating neural development and/or function, and revealed expression of several previously unidentified metabolic, neuroendocrine, and neurodevelopment pathways in POMC neurons. Conclusions: PNE does not result in obesity and type 2 diabetes but instead enhances leptin-melanocortinergic feeding and body weight regulation via POMC neurons in adult offspring. PNE leads to selective upregulation of Gm15851, a lncRNA, in adult offspring POMC neurons. POMC neurons express several lncRNAs and pathways possibly regulating POMC neuronal development and/or function.

Original languageEnglish (US)
Article number93
JournalGenome Medicine
Volume8
Issue number1
DOIs
StatePublished - Sep 8 2016

Fingerprint

Pro-Opiomelanocortin
Nicotine
Epigenomics
Long Noncoding RNA
Neurons
Leptin
RNA Sequence Analysis
Melanocortins
Obesity
Type 2 Diabetes Mellitus
Lasers
Up-Regulation
Parturition
Glucose
Appetite Depressants
Microdissection
High Fat Diet
Cholinergic Receptors
Drinking Water
Epidemiologic Studies

Keywords

  • Epigenomics
  • Gestational nicotine exposure
  • Gm15851
  • Leptin-melanocortin signaling
  • LncRNA
  • Obesity
  • POMC neurons
  • Transcriptomics
  • Type 2 diabetes

ASJC Scopus subject areas

  • Molecular Medicine
  • Molecular Biology
  • Genetics
  • Genetics(clinical)

Cite this

Epigenomic and metabolic responses of hypothalamic POMC neurons to gestational nicotine exposure in adult offspring. / Silva, Jose P.; Lambert, Guerline; van Booven, Derek; Wahlestedt, Claes R.

In: Genome Medicine, Vol. 8, No. 1, 93, 08.09.2016.

Research output: Contribution to journalArticle

@article{c5ae4687b4bd469b80cba011b1a0359e,
title = "Epigenomic and metabolic responses of hypothalamic POMC neurons to gestational nicotine exposure in adult offspring",
abstract = "Background: Epidemiological and animal studies have reported that prenatal nicotine exposure (PNE) leads to obesity and type-2 diabetes in offspring. Central leptin-melanocortin signaling via hypothalamic arcuate proopiomelanocortin (POMC) neurons is crucial for the regulation of energy and glucose balance. Furthermore, hypothalamic POMC neurons were recently found to mediate the anorectic effects of nicotine through activation of acetylcholine receptors. Here, we hypothesized that PNE impairs leptin-melanocortinergic regulation of energy balance in first-generation offspring by altering expression of long non-coding RNAs (lncRNAs) putatively regulating development and/or function of hypothalamic POMC neurons. Methods: C57BL/6J females were exposed ad libitum to nicotine through drinking water and crossed with C57BL/6J males. Nicotine exposure was sustained during pregnancy and discontinued at parturition. Offspring development was monitored from birth into adulthood. From the age of 8 weeks, central leptin-melanocortin signaling, diabetes, and obesity susceptibility were assessed in male offspring fed a low-fat or high-fat diet for 16 weeks. Nicotine-exposed and non-exposed C57BL/6J females were also crossed with C57BL/6J males expressing the enhanced green fluorescent protein specifically in POMC neurons. Transgenic male offspring were subjected to laser microdissections and RNA sequencing (RNA-seq) analysis of POMC neurons for determination of nicotine-induced gene expression changes and regulatory lncRNA/protein-coding gene interactions. Results: Contrary to expectation based on previous studies, PNE did not impair but rather enhanced leptin-melanocortinergic regulation of energy and glucose balance via POMC neurons in offspring. RNA-seq of laser microdissected POMC neurons revealed only one consistent change, upregulation of Gm15851, a lncRNA of yet unidentified function, in nicotine-exposed offspring. RNA-seq further suggested 82 cis-regulatory lncRNA/protein-coding gene interactions, 19 of which involved coding genes regulating neural development and/or function, and revealed expression of several previously unidentified metabolic, neuroendocrine, and neurodevelopment pathways in POMC neurons. Conclusions: PNE does not result in obesity and type 2 diabetes but instead enhances leptin-melanocortinergic feeding and body weight regulation via POMC neurons in adult offspring. PNE leads to selective upregulation of Gm15851, a lncRNA, in adult offspring POMC neurons. POMC neurons express several lncRNAs and pathways possibly regulating POMC neuronal development and/or function.",
keywords = "Epigenomics, Gestational nicotine exposure, Gm15851, Leptin-melanocortin signaling, LncRNA, Obesity, POMC neurons, Transcriptomics, Type 2 diabetes",
author = "Silva, {Jose P.} and Guerline Lambert and {van Booven}, Derek and Wahlestedt, {Claes R}",
year = "2016",
month = "9",
day = "8",
doi = "10.1186/s13073-016-0348-2",
language = "English (US)",
volume = "8",
journal = "Genome Medicine",
issn = "1756-994X",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - Epigenomic and metabolic responses of hypothalamic POMC neurons to gestational nicotine exposure in adult offspring

AU - Silva, Jose P.

AU - Lambert, Guerline

AU - van Booven, Derek

AU - Wahlestedt, Claes R

PY - 2016/9/8

Y1 - 2016/9/8

N2 - Background: Epidemiological and animal studies have reported that prenatal nicotine exposure (PNE) leads to obesity and type-2 diabetes in offspring. Central leptin-melanocortin signaling via hypothalamic arcuate proopiomelanocortin (POMC) neurons is crucial for the regulation of energy and glucose balance. Furthermore, hypothalamic POMC neurons were recently found to mediate the anorectic effects of nicotine through activation of acetylcholine receptors. Here, we hypothesized that PNE impairs leptin-melanocortinergic regulation of energy balance in first-generation offspring by altering expression of long non-coding RNAs (lncRNAs) putatively regulating development and/or function of hypothalamic POMC neurons. Methods: C57BL/6J females were exposed ad libitum to nicotine through drinking water and crossed with C57BL/6J males. Nicotine exposure was sustained during pregnancy and discontinued at parturition. Offspring development was monitored from birth into adulthood. From the age of 8 weeks, central leptin-melanocortin signaling, diabetes, and obesity susceptibility were assessed in male offspring fed a low-fat or high-fat diet for 16 weeks. Nicotine-exposed and non-exposed C57BL/6J females were also crossed with C57BL/6J males expressing the enhanced green fluorescent protein specifically in POMC neurons. Transgenic male offspring were subjected to laser microdissections and RNA sequencing (RNA-seq) analysis of POMC neurons for determination of nicotine-induced gene expression changes and regulatory lncRNA/protein-coding gene interactions. Results: Contrary to expectation based on previous studies, PNE did not impair but rather enhanced leptin-melanocortinergic regulation of energy and glucose balance via POMC neurons in offspring. RNA-seq of laser microdissected POMC neurons revealed only one consistent change, upregulation of Gm15851, a lncRNA of yet unidentified function, in nicotine-exposed offspring. RNA-seq further suggested 82 cis-regulatory lncRNA/protein-coding gene interactions, 19 of which involved coding genes regulating neural development and/or function, and revealed expression of several previously unidentified metabolic, neuroendocrine, and neurodevelopment pathways in POMC neurons. Conclusions: PNE does not result in obesity and type 2 diabetes but instead enhances leptin-melanocortinergic feeding and body weight regulation via POMC neurons in adult offspring. PNE leads to selective upregulation of Gm15851, a lncRNA, in adult offspring POMC neurons. POMC neurons express several lncRNAs and pathways possibly regulating POMC neuronal development and/or function.

AB - Background: Epidemiological and animal studies have reported that prenatal nicotine exposure (PNE) leads to obesity and type-2 diabetes in offspring. Central leptin-melanocortin signaling via hypothalamic arcuate proopiomelanocortin (POMC) neurons is crucial for the regulation of energy and glucose balance. Furthermore, hypothalamic POMC neurons were recently found to mediate the anorectic effects of nicotine through activation of acetylcholine receptors. Here, we hypothesized that PNE impairs leptin-melanocortinergic regulation of energy balance in first-generation offspring by altering expression of long non-coding RNAs (lncRNAs) putatively regulating development and/or function of hypothalamic POMC neurons. Methods: C57BL/6J females were exposed ad libitum to nicotine through drinking water and crossed with C57BL/6J males. Nicotine exposure was sustained during pregnancy and discontinued at parturition. Offspring development was monitored from birth into adulthood. From the age of 8 weeks, central leptin-melanocortin signaling, diabetes, and obesity susceptibility were assessed in male offspring fed a low-fat or high-fat diet for 16 weeks. Nicotine-exposed and non-exposed C57BL/6J females were also crossed with C57BL/6J males expressing the enhanced green fluorescent protein specifically in POMC neurons. Transgenic male offspring were subjected to laser microdissections and RNA sequencing (RNA-seq) analysis of POMC neurons for determination of nicotine-induced gene expression changes and regulatory lncRNA/protein-coding gene interactions. Results: Contrary to expectation based on previous studies, PNE did not impair but rather enhanced leptin-melanocortinergic regulation of energy and glucose balance via POMC neurons in offspring. RNA-seq of laser microdissected POMC neurons revealed only one consistent change, upregulation of Gm15851, a lncRNA of yet unidentified function, in nicotine-exposed offspring. RNA-seq further suggested 82 cis-regulatory lncRNA/protein-coding gene interactions, 19 of which involved coding genes regulating neural development and/or function, and revealed expression of several previously unidentified metabolic, neuroendocrine, and neurodevelopment pathways in POMC neurons. Conclusions: PNE does not result in obesity and type 2 diabetes but instead enhances leptin-melanocortinergic feeding and body weight regulation via POMC neurons in adult offspring. PNE leads to selective upregulation of Gm15851, a lncRNA, in adult offspring POMC neurons. POMC neurons express several lncRNAs and pathways possibly regulating POMC neuronal development and/or function.

KW - Epigenomics

KW - Gestational nicotine exposure

KW - Gm15851

KW - Leptin-melanocortin signaling

KW - LncRNA

KW - Obesity

KW - POMC neurons

KW - Transcriptomics

KW - Type 2 diabetes

UR - http://www.scopus.com/inward/record.url?scp=84986265737&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84986265737&partnerID=8YFLogxK

U2 - 10.1186/s13073-016-0348-2

DO - 10.1186/s13073-016-0348-2

M3 - Article

C2 - 27609221

AN - SCOPUS:84986265737

VL - 8

JO - Genome Medicine

JF - Genome Medicine

SN - 1756-994X

IS - 1

M1 - 93

ER -