Enhanced biomass burning as a source of aerosol ammonium over cities in central China in autumn

Hong Wei Xiao, Jing Feng Wu, Li Luo, Cheng Liu, Ya Jun Xie, Hua Yun Xiao

Research output: Contribution to journalArticlepeer-review

Abstract

Atmospheric ambient gaseous ammonia (NH3), the most abundant alkaline gas, affects public health and climate change through its key role in the formation of secondary aerosols via reactions with acidic gases. Estimation of the contributions of ammonia sources is very challenging in the urban atmosphere. Stable nitrogen isotope ratio (δ15N) measurements have shown that urban aerosol NH4+ and gaseous NH3 are derived from fossil fuel combustion-related (FF) sources, such as coal combustion, NH3 slip, and vehicle exhaust, and volatilization-related sources, such as agriculture and urban water volatilization. Biomass burning (BB) sources, especially residential biofuel, can produce vast quantities of NH3 and other pollutants and may greatly influence air quality and contribute to increased urban NH3 emissions. In the present study, we continually collected PM2.5 samples at three urban sites in Central China during autumn and analyzed the major water-soluble ions and δ15N values of aerosol NH4+. The concentrations of NH4+ increased as the temperature decreased close to winter, whereas the δ15N values did not show this pattern. According to the Bayesian model after isotope fractionation correction, FF sources contributed to 56.4 ± 17.1%, 46.4 ± 18.2%, and 51.8 ± 14.9% of aerosol NH4+ in Nanchang, Wuhan, and Changsha, respectively, throughout autumn. The contributions from BB sources were 34.5 ± 20.4%, 46.4 ± 21.4%, and 40.4 ± 17.4% for Nanchang, Wuhan, and Changsha, respectively. We also found the fraction of aerosol NH4+ from BB increased in all three cities from September to November 2017, which was likely caused by increased heating demands with the decrease in temperature during the season. Furthermore, BB was responsible for a severe haze event (maximum PM2.5 of 205.69 μg/m3) in Nanchang. These findings suggest government controls to improve air quality should include BB sources in addition to FF sources.

Original languageEnglish (US)
Article number115278
JournalEnvironmental Pollution
Volume266
DOIs
StatePublished - Nov 2020

Keywords

  • Aerosol ammonium
  • Biomass burning
  • Haze
  • Source apportionment
  • Stable nitrogen isotope

ASJC Scopus subject areas

  • Toxicology
  • Pollution
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Enhanced biomass burning as a source of aerosol ammonium over cities in central China in autumn'. Together they form a unique fingerprint.

Cite this