Enhance CNN Robustness against Noises for Classification of 12-Lead ECG with Variable Length

Linhai Ma, Liang Liang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Electrocardiogram (ECG) is the most widely used diagnostic tool to monitor the condition of the cardiovascular system. Deep neural networks (DNNs), have been developed in many research labs for automatic interpretation of ECG signals to identify potential abnormalities in patient hearts. Studies have shown that given a sufficiently large amount of data, the classification accuracy of DNNs could reach human-expert cardiologist level. However, despite of the excellent performance in classification accuracy, it has been shown that DNNs are highly vulnerable to adversarial noises which are subtle changes in input of a DNN and lead to a wrong class-label prediction with a high confidence. Thus, it is challenging and essential to improve robustness of DNNs against adversarial noises for ECG signal classification -a life-critical application. In this work, we designed a CNN for classification of 12-lead ECG signals with variable length, and we applied three defense methods to improve robustness of this CNN for this classification task. The ECG data in this study is very challenging because the sample size is limited, and the length of each ECG recording varies in a large range. The evaluation results show that our customized CNN reached satisfying F1 score and average accuracy, comparable to the top-6 entries in the CPSC2018 ECG classification challenge, and the defense methods enhanced robustness of our CNN against adversarial noises and white noises, with a minimal reduction in accuracy on clean data.

Original languageEnglish (US)
Title of host publicationProceedings - 19th IEEE International Conference on Machine Learning and Applications, ICMLA 2020
EditorsM. Arif Wani, Feng Luo, Xiaolin Li, Dejing Dou, Francesco Bonchi
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages839-846
Number of pages8
ISBN (Electronic)9781728184708
DOIs
StatePublished - Dec 2020
Event19th IEEE International Conference on Machine Learning and Applications, ICMLA 2020 - Virtual, Miami, United States
Duration: Dec 14 2020Dec 17 2020

Publication series

NameProceedings - 19th IEEE International Conference on Machine Learning and Applications, ICMLA 2020

Conference

Conference19th IEEE International Conference on Machine Learning and Applications, ICMLA 2020
Country/TerritoryUnited States
CityVirtual, Miami
Period12/14/2012/17/20

Keywords

  • adversarial noises
  • CNN
  • ECG
  • robustness

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Computer Vision and Pattern Recognition
  • Hardware and Architecture

Fingerprint

Dive into the research topics of 'Enhance CNN Robustness against Noises for Classification of 12-Lead ECG with Variable Length'. Together they form a unique fingerprint.

Cite this