Engineered cartilage covered ear implants for auricular cartilage reconstruction

Sang Jin Lee, Christopher Broda, Anthony Atala, James J. Yoo

Research output: Contribution to journalArticle

44 Scopus citations

Abstract

Cartilage tissues are often required for auricular tissue reconstruction. Currently, alloplastic ear-shaped medical implants composed of silicon and polyethylene are being used clinically. However, the use of these implants is often associated with complications, including inflammation, infection, erosion, and dislodgement. To overcome these limitations, we propose a system in which tissue-engineered cartilage serves as a shell that entirely covers the alloplastic implants. This study investigated whether cartilage tissue, engineered with chondrocytes and a fibrin hydrogel, would provide adequate coverage of a commercially used medical implant. To demonstrate the in vivo stability of cell-fibrin constructs, we tested variations of fibrinogen and thrombin concentration as well as cell density. After implantation, the retrieved engineered cartilage tissue was evaluated by histo- and immunohistochemical, biochemical, and mechanical analyses. Histomorphological evaluations consistently showed cartilage formation over the medical implants with the maintenance of dimensional stability. An initial cell density was determined that is critical for the production of matrix components such as glycosaminoglycans (GAG), elastin, type II collagen, and for mechanical strength. This study shows that engineered cartilage tissues are able to serve as a shell that entirely covers the medical implant, which may minimize the morbidity associated with implant dislodgement.

Original languageEnglish (US)
Pages (from-to)306-313
Number of pages8
JournalBiomacromolecules
Volume12
Issue number2
DOIs
StatePublished - Feb 14 2011

ASJC Scopus subject areas

  • Bioengineering
  • Biomaterials
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Engineered cartilage covered ear implants for auricular cartilage reconstruction'. Together they form a unique fingerprint.

  • Cite this