TY - JOUR
T1 - Endurance training has little effect on active muscle free fatty acid, lipoprotein cholesterol, or triglyceride net balances
AU - Jacobs, Kevin A.
AU - Krauss, Ronald M.
AU - Fattor, Jill A.
AU - Horning, Michael A.
AU - Friedlander, Anne L.
AU - Bauer, Timothy A.
AU - Hagobian, Todd A.
AU - Wolfel, Eugene E.
AU - Brooks, George A.
PY - 2006
Y1 - 2006
N2 - We evaluated the hypothesis that net leg total FFA, LDL-C, and TG uptake and HDL-C release during moderate-intensity cycling exercise would be increased following endurance training. Eight sedentary men (26 ± 1 yr, 77.4 ± 3.7 kg) were studied in the postprandial state during 90 min of rest and 60 min of exercise twice before (45% and 65% V̇O2 peak) and twice after 9 wk of endurance training (55% and 65% posttraining V̇O 2 peak). Measurements across an exercising leg were taken to be a surrogate for active skeletal muscle. To determine limb lipid exchange, femoral arterial and venous blood samples drawn simultaneously at rest and during exercise were analyzed for total and individual FFA (e.g., palmitate, oleate), LDL-C, HDL-C, and TG concentrations, and limb blood flow was determined by thermodilution. The transition from rest to exercise resulted in a shift from net leg total FFA release (-44 ± 16 μmol/min) to uptake (193 ± 49 μmol/min) that was unaffected by either exercise intensity or endurance training. The relative net leg release and uptake of individual FFA closely resembled their relative abundances in the plasma with ∼21 and 41% of net leg total FFA uptake during exercise accounted for by palmitate and oleate, respectively. Endurance training resulted in significant changes in arterial concentrations of HDL-C (49 ± 5 vs. 52 ± 5 mg/dl, pre vs. post) and LDL-C (82 ± 9 vs. 76 ± 9 mg/dl, pre vs. post), but there was no net TG or LDL-C uptake or HDL-C release across the resting or active leg before or after endurance training. In conclusion, endurance training favorably affects blood lipoprotein profiles, even in young, healthy normolipidemic men, but muscle contractions per se have little effect on net leg LDL-C, or TG uptake or HDL-C release during moderate-intensity cycling exercise. Therefore, the favorable effects of physical activity on the lipid profiles of young, healthy normolipidemic men in the postprandial state are not attributable to changes in HDL-C or LDL-C exchange across active skeletal muscle.
AB - We evaluated the hypothesis that net leg total FFA, LDL-C, and TG uptake and HDL-C release during moderate-intensity cycling exercise would be increased following endurance training. Eight sedentary men (26 ± 1 yr, 77.4 ± 3.7 kg) were studied in the postprandial state during 90 min of rest and 60 min of exercise twice before (45% and 65% V̇O2 peak) and twice after 9 wk of endurance training (55% and 65% posttraining V̇O 2 peak). Measurements across an exercising leg were taken to be a surrogate for active skeletal muscle. To determine limb lipid exchange, femoral arterial and venous blood samples drawn simultaneously at rest and during exercise were analyzed for total and individual FFA (e.g., palmitate, oleate), LDL-C, HDL-C, and TG concentrations, and limb blood flow was determined by thermodilution. The transition from rest to exercise resulted in a shift from net leg total FFA release (-44 ± 16 μmol/min) to uptake (193 ± 49 μmol/min) that was unaffected by either exercise intensity or endurance training. The relative net leg release and uptake of individual FFA closely resembled their relative abundances in the plasma with ∼21 and 41% of net leg total FFA uptake during exercise accounted for by palmitate and oleate, respectively. Endurance training resulted in significant changes in arterial concentrations of HDL-C (49 ± 5 vs. 52 ± 5 mg/dl, pre vs. post) and LDL-C (82 ± 9 vs. 76 ± 9 mg/dl, pre vs. post), but there was no net TG or LDL-C uptake or HDL-C release across the resting or active leg before or after endurance training. In conclusion, endurance training favorably affects blood lipoprotein profiles, even in young, healthy normolipidemic men, but muscle contractions per se have little effect on net leg LDL-C, or TG uptake or HDL-C release during moderate-intensity cycling exercise. Therefore, the favorable effects of physical activity on the lipid profiles of young, healthy normolipidemic men in the postprandial state are not attributable to changes in HDL-C or LDL-C exchange across active skeletal muscle.
KW - Cholesterol
KW - Crossover concept
KW - Exertion
KW - Lipid metabolism
UR - http://www.scopus.com/inward/record.url?scp=33748453739&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33748453739&partnerID=8YFLogxK
U2 - 10.1152/ajpendo.00020.2006
DO - 10.1152/ajpendo.00020.2006
M3 - Article
C2 - 16684856
AN - SCOPUS:33748453739
VL - 291
SP - E656-E665
JO - American Journal of Physiology - Cell Physiology
JF - American Journal of Physiology - Cell Physiology
SN - 0363-6143
IS - 3
ER -