Einstein and conformally flat critical metrics of the volume functional

Pengzi Miao, Luen F. Tam

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

Let R be a constant. Let MγR be the space of smooth metrics g on a given compact manifold Ωn (n ≥ 3) with smooth boundary S such that g has constant scalar curvature R and g|ε is a fixed metric γ on S. Let V (g) be the volume of g ε MγR . In this work, we classify all Einstein or conformally flat metrics which are critical points of V (.) in MγR.

Original languageEnglish (US)
Pages (from-to)2907-2937
Number of pages31
JournalTransactions of the American Mathematical Society
Volume363
Issue number6
DOIs
StatePublished - Jun 2011

Fingerprint

Conformally Flat
Albert Einstein
Metric
Constant Scalar Curvature
Compact Manifold
Critical point
Classify

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

Einstein and conformally flat critical metrics of the volume functional. / Miao, Pengzi; Tam, Luen F.

In: Transactions of the American Mathematical Society, Vol. 363, No. 6, 06.2011, p. 2907-2937.

Research output: Contribution to journalArticle

@article{e537aa04b3ae4a76aa6b3ed19587194a,
title = "Einstein and conformally flat critical metrics of the volume functional",
abstract = "Let R be a constant. Let MγR be the space of smooth metrics g on a given compact manifold Ωn (n ≥ 3) with smooth boundary S such that g has constant scalar curvature R and g|ε is a fixed metric γ on S. Let V (g) be the volume of g ε MγR . In this work, we classify all Einstein or conformally flat metrics which are critical points of V (.) in MγR.",
author = "Pengzi Miao and Tam, {Luen F.}",
year = "2011",
month = "6",
doi = "10.1090/S0002-9947-2011-05195-0",
language = "English (US)",
volume = "363",
pages = "2907--2937",
journal = "Transactions of the American Mathematical Society",
issn = "0002-9947",
publisher = "American Mathematical Society",
number = "6",

}

TY - JOUR

T1 - Einstein and conformally flat critical metrics of the volume functional

AU - Miao, Pengzi

AU - Tam, Luen F.

PY - 2011/6

Y1 - 2011/6

N2 - Let R be a constant. Let MγR be the space of smooth metrics g on a given compact manifold Ωn (n ≥ 3) with smooth boundary S such that g has constant scalar curvature R and g|ε is a fixed metric γ on S. Let V (g) be the volume of g ε MγR . In this work, we classify all Einstein or conformally flat metrics which are critical points of V (.) in MγR.

AB - Let R be a constant. Let MγR be the space of smooth metrics g on a given compact manifold Ωn (n ≥ 3) with smooth boundary S such that g has constant scalar curvature R and g|ε is a fixed metric γ on S. Let V (g) be the volume of g ε MγR . In this work, we classify all Einstein or conformally flat metrics which are critical points of V (.) in MγR.

UR - http://www.scopus.com/inward/record.url?scp=79952169663&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79952169663&partnerID=8YFLogxK

U2 - 10.1090/S0002-9947-2011-05195-0

DO - 10.1090/S0002-9947-2011-05195-0

M3 - Article

VL - 363

SP - 2907

EP - 2937

JO - Transactions of the American Mathematical Society

JF - Transactions of the American Mathematical Society

SN - 0002-9947

IS - 6

ER -