Effects of single-ventricle physiology with aortopulmonary shunt on regional myocardial blood flow in a piglet model

Marco Ricci, Pierluca Lombardi, Alvaro Galindo, Steven Schultz, Amelia Vasquez, Eliot Rosenkranz

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Objectives: In single-ventricle physiology with aortopulmonary connection, diastolic hypotension could alter regional myocardial blood flow. Also, afterload increases could impair myocardial blood flow by increased wall tension and relative subendocardial malperfusion. This study explores the effects of acute single-ventricle physiology on regional myocardial blood flow distribution and investigates the consequences of moderate afterload augmentation on myocardial blood flow. Methods: Single-ventricle physiology was created in 8 piglets without using bypass, and 8 animals served as a sham control group. Aortopulmonary shunt, echo-guided atrial septostomy, tricuspid valve avulsion, and pulmonary artery occlusion allowed the left ventricle to support systemic and pulmonary circulations. Afterload augmentation was produced by aortic balloon inflation. Physiologic recordings and stable-isotope microsphere determination of myocardial blood flow to the subepicardium and subendocardium were obtained at baseline and during single-ventricle physiology (at 30 minutes, 120 minutes, and afterload increase). Results: Arterial oxygen content, diastolic pressure, and coronary perfusion pressure declined after creation of single-ventricle physiology (P < .05). Acute single-ventricle physiology resulted in higher myocardial blood flow (P < .05), unchanged subendocardial/subepicardial flow ratio and oxygen delivery, and lower coronary resistance (P < .01) as compared with biventricular physiology. Afterload augmentation increased coronary perfusion pressure, causing a trend for higher myocardial blood flow and oxygen delivery (P = NS), without affecting subendocardial/subepicardial flow distribution. Myocardial oxygen supply/demand balance fell in single-ventricle physiology, remaining unchanged during afterload augmentation. Conclusions: Our study demonstrates that, in acute single-ventricle physiology with aortopulmonary shunt, myocardial blood flow is maintained by lower coronary perfusion pressure. Further, single-ventricle physiology results in less favorable myocardial oxygen supply/demand balance, although normal transmural myocardial blood flow distribution is maintained. Avoidance of diastolic runoff (ventricle-pulmonary conduit) could improve coronary reserve. In our study, moderate afterload augmentation did not induce relative subendocardial malperfusion, nor did it worsen oxygen supply/demand balance.

Original languageEnglish
JournalJournal of Thoracic and Cardiovascular Surgery
Volume132
Issue number2
DOIs
StatePublished - Aug 1 2006

Fingerprint

Regional Blood Flow
Oxygen
Perfusion
Pressure
Pulmonary Circulation
Tricuspid Valve
Economic Inflation
Microspheres
Isotopes
Hypotension
Pulmonary Artery
Heart Ventricles
Blood Pressure
Lung
Control Groups

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine
  • Surgery

Cite this

Effects of single-ventricle physiology with aortopulmonary shunt on regional myocardial blood flow in a piglet model. / Ricci, Marco; Lombardi, Pierluca; Galindo, Alvaro; Schultz, Steven; Vasquez, Amelia; Rosenkranz, Eliot.

In: Journal of Thoracic and Cardiovascular Surgery, Vol. 132, No. 2, 01.08.2006.

Research output: Contribution to journalArticle

Ricci, Marco ; Lombardi, Pierluca ; Galindo, Alvaro ; Schultz, Steven ; Vasquez, Amelia ; Rosenkranz, Eliot. / Effects of single-ventricle physiology with aortopulmonary shunt on regional myocardial blood flow in a piglet model. In: Journal of Thoracic and Cardiovascular Surgery. 2006 ; Vol. 132, No. 2.
@article{e2cc991b6a8b4405b88d032fd5517495,
title = "Effects of single-ventricle physiology with aortopulmonary shunt on regional myocardial blood flow in a piglet model",
abstract = "Objectives: In single-ventricle physiology with aortopulmonary connection, diastolic hypotension could alter regional myocardial blood flow. Also, afterload increases could impair myocardial blood flow by increased wall tension and relative subendocardial malperfusion. This study explores the effects of acute single-ventricle physiology on regional myocardial blood flow distribution and investigates the consequences of moderate afterload augmentation on myocardial blood flow. Methods: Single-ventricle physiology was created in 8 piglets without using bypass, and 8 animals served as a sham control group. Aortopulmonary shunt, echo-guided atrial septostomy, tricuspid valve avulsion, and pulmonary artery occlusion allowed the left ventricle to support systemic and pulmonary circulations. Afterload augmentation was produced by aortic balloon inflation. Physiologic recordings and stable-isotope microsphere determination of myocardial blood flow to the subepicardium and subendocardium were obtained at baseline and during single-ventricle physiology (at 30 minutes, 120 minutes, and afterload increase). Results: Arterial oxygen content, diastolic pressure, and coronary perfusion pressure declined after creation of single-ventricle physiology (P < .05). Acute single-ventricle physiology resulted in higher myocardial blood flow (P < .05), unchanged subendocardial/subepicardial flow ratio and oxygen delivery, and lower coronary resistance (P < .01) as compared with biventricular physiology. Afterload augmentation increased coronary perfusion pressure, causing a trend for higher myocardial blood flow and oxygen delivery (P = NS), without affecting subendocardial/subepicardial flow distribution. Myocardial oxygen supply/demand balance fell in single-ventricle physiology, remaining unchanged during afterload augmentation. Conclusions: Our study demonstrates that, in acute single-ventricle physiology with aortopulmonary shunt, myocardial blood flow is maintained by lower coronary perfusion pressure. Further, single-ventricle physiology results in less favorable myocardial oxygen supply/demand balance, although normal transmural myocardial blood flow distribution is maintained. Avoidance of diastolic runoff (ventricle-pulmonary conduit) could improve coronary reserve. In our study, moderate afterload augmentation did not induce relative subendocardial malperfusion, nor did it worsen oxygen supply/demand balance.",
author = "Marco Ricci and Pierluca Lombardi and Alvaro Galindo and Steven Schultz and Amelia Vasquez and Eliot Rosenkranz",
year = "2006",
month = "8",
day = "1",
doi = "10.1016/j.jtcvs.2006.03.050",
language = "English",
volume = "132",
journal = "Journal of Thoracic and Cardiovascular Surgery",
issn = "0022-5223",
publisher = "Mosby Inc.",
number = "2",

}

TY - JOUR

T1 - Effects of single-ventricle physiology with aortopulmonary shunt on regional myocardial blood flow in a piglet model

AU - Ricci, Marco

AU - Lombardi, Pierluca

AU - Galindo, Alvaro

AU - Schultz, Steven

AU - Vasquez, Amelia

AU - Rosenkranz, Eliot

PY - 2006/8/1

Y1 - 2006/8/1

N2 - Objectives: In single-ventricle physiology with aortopulmonary connection, diastolic hypotension could alter regional myocardial blood flow. Also, afterload increases could impair myocardial blood flow by increased wall tension and relative subendocardial malperfusion. This study explores the effects of acute single-ventricle physiology on regional myocardial blood flow distribution and investigates the consequences of moderate afterload augmentation on myocardial blood flow. Methods: Single-ventricle physiology was created in 8 piglets without using bypass, and 8 animals served as a sham control group. Aortopulmonary shunt, echo-guided atrial septostomy, tricuspid valve avulsion, and pulmonary artery occlusion allowed the left ventricle to support systemic and pulmonary circulations. Afterload augmentation was produced by aortic balloon inflation. Physiologic recordings and stable-isotope microsphere determination of myocardial blood flow to the subepicardium and subendocardium were obtained at baseline and during single-ventricle physiology (at 30 minutes, 120 minutes, and afterload increase). Results: Arterial oxygen content, diastolic pressure, and coronary perfusion pressure declined after creation of single-ventricle physiology (P < .05). Acute single-ventricle physiology resulted in higher myocardial blood flow (P < .05), unchanged subendocardial/subepicardial flow ratio and oxygen delivery, and lower coronary resistance (P < .01) as compared with biventricular physiology. Afterload augmentation increased coronary perfusion pressure, causing a trend for higher myocardial blood flow and oxygen delivery (P = NS), without affecting subendocardial/subepicardial flow distribution. Myocardial oxygen supply/demand balance fell in single-ventricle physiology, remaining unchanged during afterload augmentation. Conclusions: Our study demonstrates that, in acute single-ventricle physiology with aortopulmonary shunt, myocardial blood flow is maintained by lower coronary perfusion pressure. Further, single-ventricle physiology results in less favorable myocardial oxygen supply/demand balance, although normal transmural myocardial blood flow distribution is maintained. Avoidance of diastolic runoff (ventricle-pulmonary conduit) could improve coronary reserve. In our study, moderate afterload augmentation did not induce relative subendocardial malperfusion, nor did it worsen oxygen supply/demand balance.

AB - Objectives: In single-ventricle physiology with aortopulmonary connection, diastolic hypotension could alter regional myocardial blood flow. Also, afterload increases could impair myocardial blood flow by increased wall tension and relative subendocardial malperfusion. This study explores the effects of acute single-ventricle physiology on regional myocardial blood flow distribution and investigates the consequences of moderate afterload augmentation on myocardial blood flow. Methods: Single-ventricle physiology was created in 8 piglets without using bypass, and 8 animals served as a sham control group. Aortopulmonary shunt, echo-guided atrial septostomy, tricuspid valve avulsion, and pulmonary artery occlusion allowed the left ventricle to support systemic and pulmonary circulations. Afterload augmentation was produced by aortic balloon inflation. Physiologic recordings and stable-isotope microsphere determination of myocardial blood flow to the subepicardium and subendocardium were obtained at baseline and during single-ventricle physiology (at 30 minutes, 120 minutes, and afterload increase). Results: Arterial oxygen content, diastolic pressure, and coronary perfusion pressure declined after creation of single-ventricle physiology (P < .05). Acute single-ventricle physiology resulted in higher myocardial blood flow (P < .05), unchanged subendocardial/subepicardial flow ratio and oxygen delivery, and lower coronary resistance (P < .01) as compared with biventricular physiology. Afterload augmentation increased coronary perfusion pressure, causing a trend for higher myocardial blood flow and oxygen delivery (P = NS), without affecting subendocardial/subepicardial flow distribution. Myocardial oxygen supply/demand balance fell in single-ventricle physiology, remaining unchanged during afterload augmentation. Conclusions: Our study demonstrates that, in acute single-ventricle physiology with aortopulmonary shunt, myocardial blood flow is maintained by lower coronary perfusion pressure. Further, single-ventricle physiology results in less favorable myocardial oxygen supply/demand balance, although normal transmural myocardial blood flow distribution is maintained. Avoidance of diastolic runoff (ventricle-pulmonary conduit) could improve coronary reserve. In our study, moderate afterload augmentation did not induce relative subendocardial malperfusion, nor did it worsen oxygen supply/demand balance.

UR - http://www.scopus.com/inward/record.url?scp=33746209057&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33746209057&partnerID=8YFLogxK

U2 - 10.1016/j.jtcvs.2006.03.050

DO - 10.1016/j.jtcvs.2006.03.050

M3 - Article

C2 - 16872946

AN - SCOPUS:33746209057

VL - 132

JO - Journal of Thoracic and Cardiovascular Surgery

JF - Journal of Thoracic and Cardiovascular Surgery

SN - 0022-5223

IS - 2

ER -