Effects of mixing on evolution of hydrocarbon ratios in the troposphere

David D. Parrish, A. Stohl, C. Forster, E. L. Atlas, D. R. Blake, P. D. Goldan, W. C. Kuster, J. A. de Gouw

Research output: Contribution to journalArticlepeer-review

118 Scopus citations


Nonmethane hydrocarbon (NMHC) concentration ratios provide useful indicators of tropospheric oxidation and transport processes. However, the influences of both photochemical and mixing processes are inextricably linked in the evolution of these ratios. We present a model for investigating these influences by combining the transport treatment of the Lagrangian particle dispersion model FLEXPART with an ultrasimple (i.e., constant OH concentration) chemical treatment. Required model input includes NMHC emission ratios, but not ad hoc assumed background NMHC concentrations. The model results give NMHC relationships that can be directly compared, in a statistical manner, with measurements. The measured concentration ratios of the longest-lived alkanes show strong deviations from purely kinetic behavior, which the model nicely reproduces. In contrast, some measured aromatic ratio relationships show even stronger deviations that are not well reproduced by the model for reasons that are not understood. The model-measurement comparisons indicate that the interaction of mixing and photochemical processing prevent a simple interpretation of "photochemical age," but that the average age of any particular NMHC can be well defined and can be approximated by a properly chosen and interpreted NMHC ratio. In summary, the relationships of NMHC concentration ratios not only yield useful measures of photochemical processing in the troposphere, but also provide useful test of the treatment of mixing and chemical processing in chemical transport models.

Original languageEnglish (US)
Article numberD10S34
JournalJournal of Geophysical Research Atmospheres
Issue number10
StatePublished - May 27 2007

ASJC Scopus subject areas

  • Geophysics
  • Oceanography
  • Forestry
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Space and Planetary Science
  • Earth and Planetary Sciences (miscellaneous)
  • Palaeontology


Dive into the research topics of 'Effects of mixing on evolution of hydrocarbon ratios in the troposphere'. Together they form a unique fingerprint.

Cite this