Effects of a warm oceanic feature on Hurricane Opal

Lynn K Shay, Gustavo J. Goni, Peter G. Black

Research output: Contribution to journalArticle

451 Citations (Scopus)

Abstract

On 4 October 1995, Hurricane Opal deepened from 965 to 916 hPa in the Gulf of Mexico over a 14-h period upon encountering a warm core ring (WCR) in the ocean shed by the Loop Current during an upper-level atmospheric trough interaction. Based on historical hydrographic measurements placed within the context of a two-layer model and surface height anomalies (SHA) from the radar altimeter on the TOPEX mission, upper-layer thickness fields indicated the presence of two warm core rings during September and October 1995. As Hurricane Opal passed directly over one of these WCRs, the 1-min surface winds increased from 35 to more than 60 m s-1. and the radius of maximum wind decreased from 40 to 25 km. Pre-Opal SHAs in the WCR exceeded 30 cm where the estimated depth of the 20°C isotherm was located between 175 and 200 m. Subsequent to Opal's passage, this depth decreased approximately 50 m, which suggests upwelling underneath the storm track due to Ekman divergence. The maximum heat loss of approximately 24 Kcal cm-2 relative to depth of the 26°C isotherm was a factor of 6 times the threshold value required to sustain a hurricane. Since most of this loss occurred over a period of 14 h, the heat content loss of 24 Kcal cm-2 equates to approximately 20 kW m-2. Previous observational findings suggest that about 10%-15% of upper-ocean cooling is due to surface heat fluxes. Estimated surface heat fluxes based upon heat content changes range from 2000 to 3000 W m-2 in accord with numerically simulated surface heat fluxes during Opal's encounter with the WCR. Composited AVHRR-derived SSTs indicated a 2°-3°C cooling associated with vertical mixing in the along-track direction of Opal except over the WCR where AVHRR-derived and buoy-derived SSTs decreased only by about 0.5°-1°C. Thus, the WCR's effect was to provide a regime of positive feedback to the hurricane rather than negative feedback induced by cooler waters due to upwelling and vertical mixing as observed over the Bay of Campeche and north of the WCR.

Original languageEnglish (US)
Pages (from-to)1366-1383
Number of pages18
JournalMonthly Weather Review
Volume128
Issue number5
StatePublished - May 2000

Fingerprint

opal
hurricane
heat flux
vertical mixing
AVHRR
upwelling
isotherm
sea surface temperature
cooling
storm track
upper ocean
altimeter
surface wind
effect
trough
divergence
radar
anomaly
ocean
loss

ASJC Scopus subject areas

  • Atmospheric Science

Cite this

Shay, L. K., Goni, G. J., & Black, P. G. (2000). Effects of a warm oceanic feature on Hurricane Opal. Monthly Weather Review, 128(5), 1366-1383.

Effects of a warm oceanic feature on Hurricane Opal. / Shay, Lynn K; Goni, Gustavo J.; Black, Peter G.

In: Monthly Weather Review, Vol. 128, No. 5, 05.2000, p. 1366-1383.

Research output: Contribution to journalArticle

Shay, LK, Goni, GJ & Black, PG 2000, 'Effects of a warm oceanic feature on Hurricane Opal', Monthly Weather Review, vol. 128, no. 5, pp. 1366-1383.
Shay, Lynn K ; Goni, Gustavo J. ; Black, Peter G. / Effects of a warm oceanic feature on Hurricane Opal. In: Monthly Weather Review. 2000 ; Vol. 128, No. 5. pp. 1366-1383.
@article{567b042b8ba8479c8bebd3bb1733a8e8,
title = "Effects of a warm oceanic feature on Hurricane Opal",
abstract = "On 4 October 1995, Hurricane Opal deepened from 965 to 916 hPa in the Gulf of Mexico over a 14-h period upon encountering a warm core ring (WCR) in the ocean shed by the Loop Current during an upper-level atmospheric trough interaction. Based on historical hydrographic measurements placed within the context of a two-layer model and surface height anomalies (SHA) from the radar altimeter on the TOPEX mission, upper-layer thickness fields indicated the presence of two warm core rings during September and October 1995. As Hurricane Opal passed directly over one of these WCRs, the 1-min surface winds increased from 35 to more than 60 m s-1. and the radius of maximum wind decreased from 40 to 25 km. Pre-Opal SHAs in the WCR exceeded 30 cm where the estimated depth of the 20°C isotherm was located between 175 and 200 m. Subsequent to Opal's passage, this depth decreased approximately 50 m, which suggests upwelling underneath the storm track due to Ekman divergence. The maximum heat loss of approximately 24 Kcal cm-2 relative to depth of the 26°C isotherm was a factor of 6 times the threshold value required to sustain a hurricane. Since most of this loss occurred over a period of 14 h, the heat content loss of 24 Kcal cm-2 equates to approximately 20 kW m-2. Previous observational findings suggest that about 10{\%}-15{\%} of upper-ocean cooling is due to surface heat fluxes. Estimated surface heat fluxes based upon heat content changes range from 2000 to 3000 W m-2 in accord with numerically simulated surface heat fluxes during Opal's encounter with the WCR. Composited AVHRR-derived SSTs indicated a 2°-3°C cooling associated with vertical mixing in the along-track direction of Opal except over the WCR where AVHRR-derived and buoy-derived SSTs decreased only by about 0.5°-1°C. Thus, the WCR's effect was to provide a regime of positive feedback to the hurricane rather than negative feedback induced by cooler waters due to upwelling and vertical mixing as observed over the Bay of Campeche and north of the WCR.",
author = "Shay, {Lynn K} and Goni, {Gustavo J.} and Black, {Peter G.}",
year = "2000",
month = "5",
language = "English (US)",
volume = "128",
pages = "1366--1383",
journal = "Monthly Weather Review",
issn = "0027-0644",
publisher = "American Meteorological Society",
number = "5",

}

TY - JOUR

T1 - Effects of a warm oceanic feature on Hurricane Opal

AU - Shay, Lynn K

AU - Goni, Gustavo J.

AU - Black, Peter G.

PY - 2000/5

Y1 - 2000/5

N2 - On 4 October 1995, Hurricane Opal deepened from 965 to 916 hPa in the Gulf of Mexico over a 14-h period upon encountering a warm core ring (WCR) in the ocean shed by the Loop Current during an upper-level atmospheric trough interaction. Based on historical hydrographic measurements placed within the context of a two-layer model and surface height anomalies (SHA) from the radar altimeter on the TOPEX mission, upper-layer thickness fields indicated the presence of two warm core rings during September and October 1995. As Hurricane Opal passed directly over one of these WCRs, the 1-min surface winds increased from 35 to more than 60 m s-1. and the radius of maximum wind decreased from 40 to 25 km. Pre-Opal SHAs in the WCR exceeded 30 cm where the estimated depth of the 20°C isotherm was located between 175 and 200 m. Subsequent to Opal's passage, this depth decreased approximately 50 m, which suggests upwelling underneath the storm track due to Ekman divergence. The maximum heat loss of approximately 24 Kcal cm-2 relative to depth of the 26°C isotherm was a factor of 6 times the threshold value required to sustain a hurricane. Since most of this loss occurred over a period of 14 h, the heat content loss of 24 Kcal cm-2 equates to approximately 20 kW m-2. Previous observational findings suggest that about 10%-15% of upper-ocean cooling is due to surface heat fluxes. Estimated surface heat fluxes based upon heat content changes range from 2000 to 3000 W m-2 in accord with numerically simulated surface heat fluxes during Opal's encounter with the WCR. Composited AVHRR-derived SSTs indicated a 2°-3°C cooling associated with vertical mixing in the along-track direction of Opal except over the WCR where AVHRR-derived and buoy-derived SSTs decreased only by about 0.5°-1°C. Thus, the WCR's effect was to provide a regime of positive feedback to the hurricane rather than negative feedback induced by cooler waters due to upwelling and vertical mixing as observed over the Bay of Campeche and north of the WCR.

AB - On 4 October 1995, Hurricane Opal deepened from 965 to 916 hPa in the Gulf of Mexico over a 14-h period upon encountering a warm core ring (WCR) in the ocean shed by the Loop Current during an upper-level atmospheric trough interaction. Based on historical hydrographic measurements placed within the context of a two-layer model and surface height anomalies (SHA) from the radar altimeter on the TOPEX mission, upper-layer thickness fields indicated the presence of two warm core rings during September and October 1995. As Hurricane Opal passed directly over one of these WCRs, the 1-min surface winds increased from 35 to more than 60 m s-1. and the radius of maximum wind decreased from 40 to 25 km. Pre-Opal SHAs in the WCR exceeded 30 cm where the estimated depth of the 20°C isotherm was located between 175 and 200 m. Subsequent to Opal's passage, this depth decreased approximately 50 m, which suggests upwelling underneath the storm track due to Ekman divergence. The maximum heat loss of approximately 24 Kcal cm-2 relative to depth of the 26°C isotherm was a factor of 6 times the threshold value required to sustain a hurricane. Since most of this loss occurred over a period of 14 h, the heat content loss of 24 Kcal cm-2 equates to approximately 20 kW m-2. Previous observational findings suggest that about 10%-15% of upper-ocean cooling is due to surface heat fluxes. Estimated surface heat fluxes based upon heat content changes range from 2000 to 3000 W m-2 in accord with numerically simulated surface heat fluxes during Opal's encounter with the WCR. Composited AVHRR-derived SSTs indicated a 2°-3°C cooling associated with vertical mixing in the along-track direction of Opal except over the WCR where AVHRR-derived and buoy-derived SSTs decreased only by about 0.5°-1°C. Thus, the WCR's effect was to provide a regime of positive feedback to the hurricane rather than negative feedback induced by cooler waters due to upwelling and vertical mixing as observed over the Bay of Campeche and north of the WCR.

UR - http://www.scopus.com/inward/record.url?scp=0033913432&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033913432&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0033913432

VL - 128

SP - 1366

EP - 1383

JO - Monthly Weather Review

JF - Monthly Weather Review

SN - 0027-0644

IS - 5

ER -