TY - JOUR
T1 - Dynamics of gene introgression in the African malaria vector Anopheles gambiae
AU - Zhong, Daibin
AU - Temu, Emmanuel A.
AU - Guda, Tom
AU - Gouagna, Louis
AU - Menge, David
AU - Pai, Aditi
AU - Githure, John
AU - Beier, John C.
AU - Yan, Guiyun
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2006/4
Y1 - 2006/4
N2 - Anopheles gambiae is a major malaria vector in Africa and a popular model species for a variety of ecological, evolutionary, and genetic studies on vector control. Genetic manipulation of mosquito vectorial capacity is a promising new weapon for the control of malaria. However, the release of exotic transgenic mosquitoes will bring in novel alleles in addition to the parasite-inhibiting genes, which may have unknown effects on the local population. Therefore, it is necessary to develop methodologies that can be used to evaluate the spread rate of introduced genes in A. gambiae. In this study, the effects and dynamics of genetic introgression between two geographically distinct A. gambiae populations from western Kenya (Mbita) and eastern Tanzania (Ifakara) were investigated with amplified fragment length polymorphisms (AFLPs) and microsatellite markers. Microsatellites and polymorphic cDNA markers revealed a large genetic differentiation between the two populations (average FST = 0.093, P < 0.001). When the two strains were crossed in random mating between the two populations, significant differences in the rate of genetic introgression were found in the mixed populations. Allele frequencies of 18 AFLP markers (64.3%) for Mbita and of 26 markers (92.9%) for Ifakara varied significantly from F5 to F20. This study provides basic information on how a mosquito release program would alter the genetic makeup of natural populations, which is critical for pilot field testing and ecological risk evaluation of transgenic mosquitoes.
AB - Anopheles gambiae is a major malaria vector in Africa and a popular model species for a variety of ecological, evolutionary, and genetic studies on vector control. Genetic manipulation of mosquito vectorial capacity is a promising new weapon for the control of malaria. However, the release of exotic transgenic mosquitoes will bring in novel alleles in addition to the parasite-inhibiting genes, which may have unknown effects on the local population. Therefore, it is necessary to develop methodologies that can be used to evaluate the spread rate of introduced genes in A. gambiae. In this study, the effects and dynamics of genetic introgression between two geographically distinct A. gambiae populations from western Kenya (Mbita) and eastern Tanzania (Ifakara) were investigated with amplified fragment length polymorphisms (AFLPs) and microsatellite markers. Microsatellites and polymorphic cDNA markers revealed a large genetic differentiation between the two populations (average FST = 0.093, P < 0.001). When the two strains were crossed in random mating between the two populations, significant differences in the rate of genetic introgression were found in the mixed populations. Allele frequencies of 18 AFLP markers (64.3%) for Mbita and of 26 markers (92.9%) for Ifakara varied significantly from F5 to F20. This study provides basic information on how a mosquito release program would alter the genetic makeup of natural populations, which is critical for pilot field testing and ecological risk evaluation of transgenic mosquitoes.
UR - http://www.scopus.com/inward/record.url?scp=33646173006&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33646173006&partnerID=8YFLogxK
U2 - 10.1534/genetics.105.050781
DO - 10.1534/genetics.105.050781
M3 - Article
C2 - 16452145
AN - SCOPUS:33646173006
VL - 172
SP - 2359
EP - 2365
JO - Genetics
JF - Genetics
SN - 0016-6731
IS - 4
ER -